Энергоэффективные материалы в строительстве

Содержание

Энергоэффективные материалы для строительства дома

Загородный дом должен быть теплым зимой и прохладным летом. Чем меньше энергии тратится на его обогрев и кондиционирование, тем лучше.

Энергоэффективный дом

Загородный дом должен быть теплым зимой и прохладным летом. Чем меньше энергии тратится на его обогрев и кондиционирование, тем лучше. Какие стены обладают высоким сопротивлением теплопередаче? Представляем топ-5 энергоэффективных материалов для малоэтажного строительства.

Ячеистые бетоны

Пористый строительный материал на основе бетона. Имеет множество разновидностей: газобетон, пенобетон, керамзитобетон, полистиролбетон. Создавался как утеплитель для многослойных стен и перекрытий. Однако неплохие конструкционные свойства и привлекательная цена принесли ячеистым бетонам популярность в качестве основного стенового материала в малоэтажном строительстве.

Теплопроводность ячеистого бетона в сухом состоянии примерно втрое меньше, чем у кирпича. А если учесть, что кирпичные и блочные стены теряют больше всего тепла через кладочный раствор, то энергоэффективность пористого бетона еще выше: его крупные блоки имеют точные размеры, поэтому допускается их кладка на клеевой раствор с толщиной шва всего 3 мм.

Огнестойкость ячеистого бетона – одна из самых высоких среди строительных материалов. Качественный газобетон по этому показателю может даже превосходить обычный тяжелый бетон: его состав более однороден, поэтому для образования трещин требуется более высокая температура. В сравнении с кирпичной кладкой у ячеистого бетона более высокое водопоглощение.

Чтобы сохранить теплозащитные свойства материала и продлить срок его службы, фасаду нужна защитно-декоративная отделка. Иногда на бетон просто наносят закрывающую поры фасадную краску – не самый эстетичный, зато дешевый способ предохранения кладки. Но чаще ячеистый бетон отделывают сайдингом, штукатуркой, панелями.

Выбирая конструкционный ячеистый бетон, приходится искать оптимальное соотношение между прочностью, долговечностью и теплоизоляционными свойствами.Чем плотнее бетон, тем он надежнее, но выше его теплопроводность. Некоторые виды ячеистого бетона дают усадку при твердении, это нужно учитывать при покупке «свежеиспеченных» блоков.

Наиболее заметные различия между видами ячеистых бетонов – в технологии получения пор, придающих материалу теплоизоляционные свойства. Этого добиваются добавлением в раствор пористых материалов (гранул вспененного полистирола, керамзита), пено- или газообразователя, пропусканием сжатого воздуха или сочетанием разных методов. Различаться могут также связующие, наполнители, способ твердения. Наиболее дорогой и сложный в производстве – автоклавный газобетон. Специалисты отмечают стабильность его качества: автоклавный газобетон всегда имеет заводское происхождение, в то время как другие технологии ячеистых бетонов допускают кустарное производство – отсюда разнообразные вольности в соблюдении технических условий. Газобетон не дает усадки при твердении, обладает большей в сравнении с другими ячеистыми бетонами прочностью и более низким водопоглощением.

Арболит

Придуманный в середине прошлого века, этот материал оказался надолго забыт. Между тем дома, построенные из арболита, стоят до сих пор. Это заставило строителей снова обратить внимание на качественный материал – теперь его используют при строительстве загородных домов. При влажности 6% теплопроводность арболита примерно в 6 раз ниже, чем у кирпича. Состоит материал из высокопрочного цемента (марки М500) и древесной щепы (80% от общего состава, что дало второе название материалу – древобетон). В раствор также добавляют разрешенные пропитки (сульфат алюминия), которые предохраняют древесину от гниения. После затвердевания состава и его формовки получают блоки, из которых можно построить прочный дом. Материал этот крепкий, поэтому при строительстве можно класть железобетонные перекрытия, использовать любой вид кровли.

Шероховатая поверхность арболита хо­рошо сцепляется с кладочными и штука­турными растворами, позволяя обойтись без специальных сеток. Арболит нуждается в надежной защите внешних стен от влаги. При намокании блоков их теплоизолирующие свойства ухудшаются, а промерзание во влажном состоянии приводит к разрушению.

Арболит имеет редкую для недорогих и энергоэффективных строительных материалов особенность: из него можно выводить стены сложной конфигурации, в том числе с криволинейными очертаниями. Если вам нужны, к примеру, округлые эркеры, можно заказать на производстве блоки специальной формовки. Такой материал обычно дороже приблизительно на 30%. Арболит почти не дает усадки: через 2 месяца после производства блока усадочные процессы в нем прекращаются, но возможна незначительная усадка при застывании раствора, на который эти блоки укладываются.

К отделке стен приступают примерно через 4 месяца после их возведения. Стены из арболита можно отделывать вагонкой, имитацией бруса, блок­хаусом – по принципу вентилируемого фасада. Более дорогой вариант – отделочная кирпичная кладка в полкирпича, которая предусматривает вентиляционный зазор в 2–3 см (для такой отделки нужно заранее расширить фундамент).

Стены из арболита не требуют пароизоляции. Внутри арболит должен «дышать», чтобы поглощать влагу из помещения, а затем в более сухой период отдавать ее обратно. Для этого стены можно отделать той же дышащей, отдающей влагу штукатуркой, но адаптированной для внутреннего использования.

Бревна

Несмотря на развитие новых технологий, традиционные рубленые дома остаются в числе самых востребованных: лесоматериалы относительно доступны, экологичны, энергоэффективны. Строительство бревенчатых домов хорошо развито в нашей стране – в любом регионе можно найти бригаду, которая возведет сруб недорого и качественно. Дерево проводит тепло поперек волокон примерно вдвое медленнее, чем пенобетон. Но основные теплопотери бревенчатой стены приходятся на слабые места между венцами и по углам, поэтому теплозащитные свойства стен в целом будут зависеть от качества рубки.

Самые теплые углы получают при рубке «в обло» – когда по углам строения остаются выпуски бревен. Но при этом около полуметра бревна выходит за границы сруба, то есть об экономии материала речи не идет. После стройки бревенчатый дом подвергается значительной усадке. Ему нужно выстояться не менее полугода перед остеклением и отделкой.

Для дома круглогодичного проживания рекомендуется использовать бревна диаметром не менее 240 мм. В домостроении используют 3 вида бревен: оцилиндрованное, строганое и окоренное.

Наиболее демократичный вариант – «оцилиндровка». Это бревна, предварительно выровненные по толщине в заводских условиях. При этом удаляются внешние, наиболее плотные и устойчивые к повреждениям слои древесины. Оцилиндрованное бревно самое недолговечное и очень редко превышает 240 мм в диаметре, то есть едва достигает необходимого минимума теплозащитных свойств. Зато можно сэкономить на работе: дом привозят почти готовым и собирают как конструктор. Домокомплект хорошо подогнан, стыки не продуваются, в чашах не скапливается вода.

Строганое и окоренное бревна имеют форму усеченного конуса, унаследованную от древесного ствола, который у основания (комля) толще, чем у вершины. У строганых бревен кора удаляется электрическим рубанком, с частичным захватом внешних слоев древесины. Окоренное бревно «раздевают» вручную топором – это долго и дорого, но в результате полностью сохраняется защитный слой древесной заболони, наиболее плотный и смолистый.

Дома из строганых и окоренных бревен строят только вручную, при этом их качество и теплозащитные свойства будут сильно зависеть от опыта и квалификации строителей. Хотя расценки на бревенчатые дома варьируют широко, по-настоящему долговечный и теплый бревенчатый дом – дорогое удовольствие. К тому же нужно соблюдать определенные правила, чтобы обеспечить деревянному дому пожаробезопасность. Тем не менее, он популярен не только благодаря традициям и репутации здорового жилья.

Стены деревянного дома не нуждаются в дорогостоящей отделке, что дает ощутимую экономию на материалах.

Сэндвич-панели

Панелей для быстровозводимых каркасных домов выпускается множество видов, ведь одно из преимуществ технологии – возможность адаптировать ее к местным условиям и материалам. Все они состоят из обшивки с защитными и отчасти конструкционными функциями и термоизоляции, заполняющей почти всю толщу стены.

Разнообразие каркасных домов не позволяет привести конкретных цифр, но в любом случае: стена, которая почти полностью состоит из утеплителя, сохраняет тепло эффективнее любой другой. При этом нет необходимости делать ее толстой – при одинаковой площади на участке каркасный дом значительно просторнее внутри, чем, например, кирпичный.

Каркасные и каркасно-панельные дома строятся в широком диапазоне цен: от экономвариантов до престижного среднего класса. На стоимости дома могут отражаться многочисленные нюансы, например: использование крупноформатных панелей для быстрого возведения коробки; негорючий минераловатный утеплитель; качество и свойства материала обшивки.

Есть дома из крупноформатных панелей, собрать которые можно только с помощью крана, и есть варианты из небольших панелей, удобные для самостроя.

Каркасному дому подходит любая фасадная отделка, делающая его внешне неотличимым от кирпичного, брусового, бревенчатого, каменного.

Поризованная керамика

Материал представляет собой пустотелые керамические блоки с повышенными теплоизоляционными свойствами. При их производстве в глиняную массу добавляют просеянные древесные опилки или другие включения, которые под воздействием высокой температуры выгорают, оставляя поры в теле кирпича. Помимо микропор в блоках есть множество вертикальных пустот, расположенных в шахматном порядке. Таким образом, тепло, чтобы пройти сквозь стену из «теплой» керамики, проделывает длинный извилистый путь по перегородкам между воздушными полостями.

Благодаря крупному размеру и сравнительно малому весу керамические блоки экономят время строителей и цементный раствор. Соотношение растворных швов к общему объему кладки сокращается до 5–7% (по сравнению с 25% в кирпичной кладке). Теплопроводность кладки при сокращении площади швов тоже снижается: на 50–100% по сравнению с кирпичной.

Стены из теплой керамики отличаются хорошей паропроницаемостью, которая способствует выходу лишней влаги.
Цена поризованного керамического блока выше, чем, например, газобетона.

Однако при детальном рассмотрении зачастую оказывается, что строительство дома из теплой керамики обходится не намного дороже. Сравнение цен чаще всего проводят по стоимости набора, необходимого для кладки 1 м3 стены. Но если учесть легкий вес поризованного блока, удобство работы с ним, мы получаем дополнительный выигрыш по затратам.

Теплопроводность меняется в зависимости от влажности: чем лучше материал впитывает воду, тем сильнее уменьшаются его теплозащитные свойства в сырую погоду. Но отсыреванию стен препятствуют грамотное утепление, исключающее конденсацию влаги в стенах, гидроизоляция фундамента и отделка фасада – они могут нивелировать различия материалов по их способности к водопоглощению. Поэтому при выборе стеновых конструкций лучше сразу рассматривать варианты в комплексе с возможными способами отделки.

Низкая теплопроводность материалов соответствует низкой удельной плотности, поэтому энергоэффективные стены весят меньше и не дают высокой нагрузки на фундамент, это их дополнительный «плюс». При этом арболит, поризованная керамика и ячеистые бетоны обладают низкой прочностью на излом, поэтому их требования к фундаменту выше. Для деревянных и каркасных домов подходят любые фундаменты, включая свайные. Для блоков из ячеистого бетона, керамики, арболита – свайно-ростверковые, ленточные, плитные.

опубликовано econet.ru

Энергоэффективность означает рациональное использование энергии. Потенциал энергосбережения огромен для всего мира и России в частности.

Около 40 % всей энергии, потребляемой в мире, используется в зданиях. Они являются основными потребителями энергии и главными источниками выбросов парниковых газов. 2/3 этой энергии расходуется на отопление и кондиционирование, а современные технологии позволяют значительно сократить этот показатель.

Современные тенденции и перспективы строительства и реконструкции зданий, в первую очередь, касаются рационального подхода к использованию энергетических ресурсов, комфортного микроклимата в помещениях и уменьшения влияния на окружающую среду.

Основным следствием повышения требований к теплозащите ограждающих конструкций зданий стал переход к многослойным конструктивным решениям. Они позволяют достичь высоких показателей сопротивления теплопередаче без увеличения толщины ограждающих конструкций за счет действия эффективных утеплителей.

В строительстве применяются различные теплоизоляционные материалы и конструкции, энергоэффективные фасадные системы, технологии возведения монолитных домов с несъемной опалубкой, энергоэффективные светопрозрачные конструкции.

Существуют разные варианты утепления ограждающих конструкций здания, зависящие от климатических условий и принимаемого на этапе строительного проектирования конструктивного решения. Можно выделить два основных варианта:

1) когда в многослойных стенах есть конструктивный слой и слой утеплителя – это так называемая теплотехнически неоднородная ограждающая конструкция.

2) когда слой утеплителя и конструктивный слой совпадают – это теплотехнически однородная ограждающая конструкция.

Самым эффективным теплоизолятором в строительстве является воздух. Основное отличие теплосберегающих свойств строительных материалов заключается в процентном отношении объема воздушных пор к объему скелета каркаса, образующего эти поры. При этом прослеживается характерная зависимость между теплопроводностью материала, удельным весом и его прочностными характеристиками. Кроме того, воздух может быть самостоятельным слоем утепления в многослойных стенах.

Материалы, имеющие существенные теплозащитные свойства, являются приоритетными на строительном рынке.

Теплоэффективный строительный блок из кремнегранита выполнен из строительного материала, обладающего высокими энергосберегающими качествами и долговечностью. Данный блок представляет собой слоёный пирог, где первый слой отвечает за несущую способность стены, следующий является эффективным утеплителем, слой, идущий после него, является опорным и выполняет сразу несколько функций:

-запирает утеплитель;

-отвечает за несущую способность стены;

-служит основой для внешнего отделочного слоя.

И последний слой — различные декоративные покрытия.

Для придания блоку дополнительной прочности он укреплен горизонтальными стеклопластиковыми стержнями, которые в совокупности с вертикальными слоями образуют единый каркас (клетку прочности).

Теплокомпозитный блок толщиной 40 см заменяет кирпичную кладку 4,66 метра

( Рис. 1).

Рис. 1Теплоэффективный строительный блок.

Снижение расхода топливных и энергетических ресурсов особенно важно при эксплуатации кирпичных зданий.

Проведенные эксперименты позволили выработать основные направления для достижения более высокого уровня теплозащитных качеств наружных кирпичных стен без увеличения их толщины. Мировая строительная практика показывает, что конструкции внешних стен из лицевого кирпича и крупноформатных керамических блоков – это наиболее прогрессивные технические и энергосберегающие решения. При этом обеспечиваются высокие показатели по прочности и устойчивости зданий, а также высокий уровень теплосбережения. В этом случае создается не только оптимальный температурно-влажностный и гигиенический режим внутри помещений, но и режим воздухообмена внутри стен. Качественные характеристики поризованного кирпича обусловлены его структурой с множеством микроскопических воздушных полостей, которые обеспечивают кирпичу прекрасные теплоизолирующие свойства.

Энергоэффективность наружных ограждающих конструкций зданий обеспечивается за счет использования фасадных систем, включающих минеральные

теплоизоляционные материалы.

К наиболее известным и распространенным строительным стеновым системам

следует отнести вентилируемые фасады.

Наибольшую известность получили вентилируемые фасады типа Краспан, представляющие собой многослойные эффективные по своим физико-строительным параметрам системы.

В фасадных конструктивных решениях в качестве материала теплоизолятора наибольшее применение нашли:

— теплоизоляционные плиты из минеральной ваты;

— экструдированный пенополиэтилен;

— теплоизоляционные плиты, изготовленные из базальтовых горных пород;

— плиты (блоки) из пеностекла и т. п.

Тепловые потери через окна достигают до 50% от общих теплопотерь через ограждающие конструкции зданий. Поэтому наиболее важной задачей энергосбережения в зданиях является повышение теплозащитных качеств светопрозрачных ограждающих конструкций, прежде всего, окон.

Современная промышленность строительных материалов производит разнообразные виды энергоэффективного стекла: I-стекло, K- стекло, энергосберегающее и т.п.

Энергосберегающее стекло имеет ряд преимуществ:

— отражает длинноволновые тепловые лучи в сторону их излучателя (зимой в сторону квартиры, где работают отопительные приборы, а летом в сторону улицы, где находятся нагретые солнцем камни, асфальт и т. д.), что снижает расходы на отопление зимой и на кондиционирование летом;

— обладает высокой теплоизолирующей способностью;

— уменьшает вероятность выпадения конденсата на стекле, поскольку имеет температуру на поверхности стеклопакета выше, чем на поверхности обычного стекла;

— препятствует выгоранию обивки и предметов интерьера помещения.

Эксплуатационная энергоэффективность зданий формируется, прежде всего, его теплоэнергоэффективностью, которая в свою очередь зависит от теплозащитных свойств глухой и светопрозрачных частей наружной оболочки здания.

Повышение энергетической эффективности зданий можно достичь только в результате применения комплексных архитектурно-строительных решений.

Проектный потенциал энергосбережения в зданиях и сооружениях в существенной мере зависит от опыта и квалификации авторов проекта, фактический потенциал – от качества строительных работ и точности выполнения проектных решений на этапе строительства.

Рынок энергоэффективных строительных материалов достаточно широк, но их отбор должен основываться на теплотехнических расчетах и исходя из проектных конструктивных и объемно — планировочных решений энергосбережения в зданиях.

Использование современных энергоэффективных конструкций и материалов позволяет создавать здания не только с низким потреблением энергии, но и с различными показателями ценового диапазона, комфортабельности и экологичности, что безусловно является актуальным в рамках современной строительной индустрии.

Список литературы:

Что вы должны знать об энергоэффективных технологиях

С каждым днём всё большее количество людей задумывается о применении энергоэффективных технологий. И это неудивительно, ведь каждый из нас хочет жить в тёплом и самое главное – экономичном доме. Forumhouse.ru расскажет вам о том – какие материалы и технологии используются пристроительстве энергоэффективных домов.

Итак,

  1. Что же это такое – энергоэффективный дом?
  2. Какие материалы и средства для постройки тёплого и комфортного дома вам может предложить современный рынок строительных материалов?
  3. Всё ли вы знаете об энергоэффективности проекта вашего будущего жилища?
  4. Как сократить расходы на отопление уже построенного дома?

1. Энергоэффективный дом – это…

Какой смысл мы вкладываем в словосочетание – энергоэффективный дом?

По мнению руководителя компании ТКДом Александра Водовозова – энергоэффективный дом – это здание, в котором сведены к минимуму все энергопотери, а также энергопотребление. Основным принципом строительства энергоэффективного дома является достижение максимальной герметичности жилища, использование энергосберегающих технологий и ликвидация мостиков холода.

В России, основные энергозатраты приходятся на отопление, поэтому главной задачей становится предотвращение потерь тепла через ограждающие конструкции дома – пол, стены, окна, перекрытия и крышу. Этого можно добиться с помощью современных технологий каркасного строительства. За счет применения утеплителей и специальных способов обшивки каркаса, полностью исключается наличие щелей.

Таким образом, для строительства энергоэффективного дома необходимо:

  • Возвести утеплённый фундамент. А в каркасном строительстве, подобный фундамент ещё играет роль и теплоаккумулятора;
  • Установить высокоэффективную систему вентиляции с рекуператором. Так как через вентиляцию теряется 30-40% тепла, то применение подобной системы позволит существенно снизить расход энергии на подогрев приточного воздуха;
  • Расположить жилые комнаты в южной части здания. Что позволит использовать солнечную энергию как дополнительный источник тепла;
  • Произвести максимальное утепление ограждающих конструкций. Ведь именно через них происходит основная теплопотеря.

Но зачастую, застройщики просто не хотят вкладываться в дополнительное утепление, полагая, что это приведёт к увеличению стоимости возводимого здания. Так выгодно ли строить энергоэффективный дом?

Александр Водовозов:

– Если говорить языком цифр, то возведение энергоэффективного дома обходится примерно на 15% дороже обычного, но зато в эксплуатации он дешевле на 60-70%.

Можно сказать, что строительство энергоэффективного дома является комплексным мероприятием, позволяющим экономить ваши денежные средства в обозримом будущем.

2. Фундамент «Утеплённая Шведская Плита» — как основа энергоэффективного дома

Существует мнение, что дополнительное утепление фундамента напрасная трата средств. Но так ли это на самом деле?

Обратимся за разъяснениями к техническому специалисту компании «ТЕХНОНИКОЛЬ», разрабатывающих специальные материалы для энергоэффективных домов Антону Борисову.

– Потери тепловой энергии происходят постоянно, различают только интенсивность в зависимости от типа конструкции. Например, наибольший тепловой поток проходит через верхние кровельные конструкции, что связано с плотностью теплого и холодного воздуха. Теплый воздух стремится подняться вверх, вместе с этим увлекая за собой и тепловую энергию. Также происходит и большая потеря тепла через фундамент.

Все потери тепла можно разделить на тепловые потери, которые возможно предотвратить и те, которые поддаются незначительному сокращению! Например, потери тепла через фундамент в среднем составляют 10-15% от общего объёма теплопотерь здания. Поэтому строительство энергоэффективного дома необходимо начать с возведения утеплённого фундамента.

Антон Борисов:

– Одним из эффективных способов снизить энергозатраты на отопление здания становится строительство дома на фундаменте типа «Утепленная Шведская Плита». Для этой цели применяется экструзионный пенополистирол.При выборе утеплителя следует обратить внимание на показатель теплопроводности. Чем он меньше, тем лучше, поскольку потребуется меньшая толщина слоя теплоизоляции.

При устройстве плитных энергоэффективных фундаментов также следует помнить о таком важном показателе – как прочность утеплителя на сжатие. Поскольку такие фундаменты утепляются снизу, утеплитель должен выдерживать вес целого дома, со всеми переменными нагрузками!

3. Выбор оптимальной толщины утеплителя

Через стены теряется до 20-30% тепла. Какую толщину утеплителя необходимо выбрать для строительства энергоэффективного дома? Объясняет руководитель Центра проектирования ROCKWOOL Татьяна Смирнова:

– В первую очередь толщина слоя утеплителя будет зависеть от конструкций здания. Если при каркасной технологии, для Центрального региона России, рекомендуемая нормами толщина теплоизоляции составляет 150 мм, а оптимальная с точки зрения энергоэффективности толщина будет 250-300 мм, то при строительстве дома из пенобетона, эффективная толщина составит 150-200 мм, при нормативной 80 мм. Для крыши следует использовать не менее 250-300 мм утеплителя. Помимо оптимальной толщины, при выборе утеплителя надо учитывать, что теплоизоляция выпускается различных марок для применения в различных строительных конструкциях, где каждый вид продукта решает определенную задачу и отвечает соответствующим требованиям.

Возведение энергоэффективного дома предполагает баланс между стоимостью материалов и качественной теплоизоляцией стен и крыши. Поэтому, нет необходимости увеличивать слой утеплителя больше чем на 30% от рекомендованной величины. Иначе увеличивается смета, и проект становится нерентабелен.

4. Чем толще стены – тем теплее дом?

Подразумевая энергоэффективность частного дома нужно думать не только о снижении внутреннего потребления энергии, но также и о дополнительных способах аккумулирования тепла, которые позволят снизить расходы на отопление. Существует заблуждение, что чем толще кладка стены строящегося дома, тем он будет теплее, но так ли это на самом деле?

Консультант forumhouse.ru Павел Орлов, представляющий компанию Смарт-Строй полагает, что – энергоэффективность здания мало зависит от материала и толщины стен. Есть принципы и технологии, которые необходимо использовать при проектировании и строительстве. А энергоэффективность дома в первую очередь будет зависеть от толщины используемого утеплителя.

Так какими принципами и технологиями нужно всё же руководствоваться при строительстве энергоэффективного дома?

Павел Орлов:

– В первую очередь застройщик должен понять, что основной принцип строительства энергоэффективного дома заключается в экономии тепловой энергии. Современные технологии позволяют уменьшить тепловые потери дома, до величины внутреннего излучения от людей и электроприборов. Несколько сложнее дела обстоят с электроэнергией и горячим водоснабжением. Их потребление, как правило, сильно снизить не удается, т. к. они в основном зависят от привычек хозяев и напрямую влияют на комфорт проживания.

Также, по мнению Павла при строительстве энергоэффективного дома есть смысл учесть следующие моменты:

  • Потенциальный заказчик должен вначале заказать проект в серьезной проектной организации, с опытом проектирования энергоэффективных домов;
  • Еще на этапе проектирования, необходимо предусмотреть использование в конструкции дома современных видов утеплителей. Этим мы закладываем высокую величину сопротивления теплопередаче;
  • Так как через окна теряется примерно 15-25% тепла, то необходимо использовать остекление со стеклопакетами из трех стекол с аргоновым заполнением.

Узнать больше о том, как рассчитать теплопотери вашего дома вы сможете в статье Павла Орлова. А прочитав тему форумчанина – Александра Федорцова (ник на форуме Скептик) «Дешёвое отопление электричеством» и ознакомившись с этим видео вы узнаете, как строительство энергоэффективного дома позволяет экономить ваши денежные средства.

Энергоэффективные строительные системы и технологии

Summary:

Энергоэффективные строительные системы и технологии

Описание:

Развитие конструктивных систем, строительных материалов, изделий и оборудования в начале XXI века будет происходить по традиционным и новым направлениям, удовлетворяющим требованиям энергосбережения, экологической безопасности, технологичности, экономичности, малой трудоемкости возведения, адаптивности к условиям реконструкции и модернизации жилых и производственных зданий.

Ключевые слова: строительство, энергосбережение, энергоэффективные здания, технологии

С. Н. Булгаков, академик, первый вице-президент Российской Академии Архитектуры и Строительных наук

Существующая СИТУАЦИЯ

Эксплуатационное энергопотребление существующих жилых и общественных зданий в России примерно в 3 раза превышает аналогичные показатели в технически развитых странах со сходными природно-климатическими характеристиками.

Активная полемика, энергосберегающие программы, теоретические разработки, образцы оборудования, экспериментальные объекты, осуществляемые в последние 10-15 лет, пока не оказали практического влияния на энергоемкость городов и поселений, но создали реалистичные предпосылки для снижения энергопотребления зданий и сооружений.

В связи с тем, что ежегодный прирост жилых и производственных площадей за счет нового строительства в 90-х годах составляет примерно 1% от существующих площадей, основной потенциал энергосбережения содержится в эксплуатационной сфере и может быть реализован посредством реконструкции и санации действующих основных фондов.

Удельные теплопотери в зданиях по экспертным оценкам распределяются следующим образом: до 40% – за счет организованной и неорганизованной инфильтрации нагретого воздуха, до 30% – за счет недостаточного сопротивления теплопередаче ограждающих конструкций, до 30% – за счет нерационального расходования горячей воды и нерегулируемого режима эксплуатации систем отопления.

Основные причины нерационального расходования тепловой энергии:

• несовершенство нерегулируемых систем естественной вентиляции;

• низкое качество и неплотности сопряжения деревянных оконных переплетов и балконных дверей;

• недостатки архитектурно-планировочных и инженерных решений отапливаемых лестничных клеток и лестнично-лифтовых блоков;

• недостаточное теплоизоляционное качество наружных стен, покрытий, потолков подвалов и светопрозрачных ограждений;

• отсутствие приборов учета, контроля и регулирования на системах отопления и горячего водоснабжения;

• чрезвычайно развитая сеть наружных теплотрасс с недостаточной или нарушенной тепловой изоляцией;

• устаревшие, и в большинстве непроизводительные, типы котельного оборудования;

• отсутствие действенного механизма материальной заинтересованности энергопотребителей в ее экономии;

• крайне недостаточное использование нетрадиционных и вторичных источников энергии.

Стратегия энергосбережения в сфере строительства и эксплуатации зданий и сооружений

Системный подход и экономически обоснованная последовательность выполнения комплекса взаимосвязанных и взаимозависимых энергосберегающих мероприятий градостроительного, архитектурно-планировочного, конструктивного, инженерного и эксплуатационного характера.

Программно-целевой метод разработки и реализации системы энергосберегающих мероприятий, ориентированных на получение конечного результата – максимальную экономию невозобновляемых топливных ресурсов при минимальных затратах средств и времени на достижение этой цели.

Первоочередная ориентация научной, проектной и практической деятельности по энергосбережению на наиболее энергоемкую сферу эксплуатации основных фондов, реализация энергосберегающих технологий в которой обеспечивает более 90% потенциального эффекта по энергосбережению за счет модернизации и реконструкции эксплуатируемых зданий, сооружений, инженерных систем, коммуникаций и энергетических объектов.

Переход на энергоэкономичные нормы проектирования и строительства новых зданий и сооружений.

По экспертным оценкам системная реализация энергосберегающих мероприятий позволяет сократить эксплуатационные энергозатраты в жилищном секторе в 2,0–2,5 раза. При этом удельная доля энергосбережения за счет совершенствования градостроительных решений составит 8–10%, архитектурно-планировочных решений – до 15%, конструктивных систем – до 25%, инженерных систем, включая системы вентиляции – до 30%, за счет совершенствования технологии эксплуатации, включая установку приборов учета, контроля и регулирования тепло-, водо- и электропотребления – до 20%.

Научно-практические рекомендации

Энергосберегающие градостроительные решения

Необходимо установить мораторий на расширение границ городов в течение 20–30 лет, развитие их в этот период должно осуществляться за счет более рационального использования территорий, уплотнения застройки до нормативного уровня без освоения новых пригородных территорий и без увеличения протяженности магистральных теплопроводов, других энергосетей и транспортных маршрутов.

Разработать технико-экономические обоснования комплексного использования традиционных централизованных и нетрадиционных систем теплоснабжения, в том числе локальных с применением котельных контейнерного типа, размещаемых на крышах или вблизи отапливаемых зданий.

Разработать программы завершения застройки жилых кварталов и микрорайонов с ликвидацией сквозных ветрообразующих пространств и организацией замкнутых дворовых и внутриквартальных территорий.

Разработать генеральные планы, программы и бизнес-планы вторичной застройки реконструируемых малоэтажных жилых кварталов с утеплением ограждающих конструкций существующих домов в соответствии с новыми теплотехническими нормативами, переходом на автоматизированные индивидуальные тепловые пункты, реконструкцией тепловых сетей, использованием крышных котельных для отопления и горячего водоснабжения на прирост площадей жилья и реализацией комплекса мер по электросбережению с организацией на основе этих кварталов энергоэффективных зон городского хозяйства.

Разработать программы использования подземного пространства (подземная урбанизация) для размещения стоянок автомашин, складских и вспомогательных помещений с использованием естественной теплоты земли или искусственных источников подогрева воздуха до положительной температуры.

Энергосберегающие архитектурно-планировочные решения

Существенное влияние на удельные теплопотери в жилых и общественных зданиях оказывают их объемно-планировочные решения и, в частности, соотношение площади ограждающих конструкций к общей площади зданий, соотношение площади оконных проемов к площади наружных стен, конфигурация зданий в плане, размещение их на рельефе и относительно стран света.

Рекомендуемые решения:

• Переход на проектирование и строительство ширококорпусных жилых домов с сокращением на 20–30% удельной площади ограждающих конструкций на квадратный метр площади жилья (рис. 1).

• Использование ширококорпусных домов при вторичной застройке реконструируемых кварталов, в том числе с возведением ширококорпусных домов вторичной застройки на месте существующих двух-пятиэтажных домов без их сноса, но с одновременной реконструкцией и продлением жизненного цикла до уровня новых зданий.

• Возведение мансардных этажей на существующих зданиях с ограждающими конструкциями повышенной теплозащиты, соответствующей второму этапу норм “Строительная теплотехника”, исключая тем самым сверхнормативные потери тепла через покрытия реконструируемых зданий.

Ширококорпусный 17-этажный дом

Энергосберегающие конструктивные системы

Наиболее рациональными видами энергоэффективных наружных ограждающих конструкций являются многослойные композитные конструкции стен и покрытий с использованием минеральных эффективных материалов.

Основные резервы теплосбережения можно реализовать при утеплении существующих жилых домов. Утепление наружных стен – самый дорогостоящий и трудоемкий процесс — обеспечивает снижение теплопотерь примерно на 12–15%.

К наиболее известным и распространенным способам утепления наружных стен относятся: вентилируемые конструкции утепления наружных стен или, как принято их называть, вентилируемые фасады; невентилируемые конструкции утепления наружных стен с использованием минераловатных и полистирольных плит с креплением их непосредственно на стены или на каркас, а также всевозможные сочетания этих вариантов с использованием местных утеплителей.

В Институте строительных конструкций и прочности Берлинского технического университета и в фирме “Этернит” разработаны варианты конструктивных решений утепления наружных стен зданий под общим названием “вентилируемые фасады” (рис. 2).

Рисунок 2. ()

Конструкции вентилируемого фасада

Рисунок 3. ()

Устройство многослойной теплоизоляционной системы (МТИС) на защитном слое трехслойной панели наружных стен

При утеплении наружных стен крупнопанельных жилых домов в Германии, Польше, Финляндии и в нашей стране широкое распространение получила многослойная теплоизоляционная система (МТИС), показанная на рис. 3.

В Белоруссии при утеплении крупнопанельных домов используется технология получившая название “термошуба” (рис. 4).

Академическим институтом инвестиционно-строительных технологий РААСН разработан универсальный сухой способ утепления наружных стен зданий и сооружений для всех климатических поясов России. Данный способ утепления может быть использован как для утепления существующих зданий, так и при возведении новых зданий повышенной теплоэкономичности в монолитном, панельном и блочном исполнении.

Рисунок 4. ()

Термошуба наружных стен жилых зданий

Рисунок 5. ()

Варианты схемных решений поквартирной системы отопления

При производстве работ практически исключаются мокрые и энергоемкие процессы.

Могут быть использованы утеплители различного вида (засыпные, заливные, плитные, в виде матов), в том числе местного изготовления.

Значительно повышаются архитектурно-эстетические качества наружной отделки фасадов зданий.

Конструктивная система универсального способа утепления наружных стен зданий предусматривает механическое крепление на расчетном расстоянии от стены облицовочных бетонных плиток заводского изготовления и заполнение образуемого пространства утеплителем.

Теплопотери через окна достигают 50% от общих теплопотерь через ограждающие конструкции, поэтому в первую очередь необходимо повышать теплозащитные качества окон. Оконные заполнения из древесины и стеклопластика с тройным остеклением, в виде стеклопакетов, с двойным остеклением и слоем пленки обеспечивают нормативные теплозащитные требования. При реконструкции снижение теплопотерь через окна может быть обеспечено посредством утепления откосов с установкой наличников и путем установки светопрозрачного экрана в межстекольном пространстве оконного блока с раздельными или спаренными переплетами.

Введение экрана позволяет ограничить естественную конвекцию в прослойках и добиться расчетного режима теплопроводности в окнах.

При одновременном учете светотехнических и теплотехнических свойств конструкций, окна с экранами имеют большую энергоэффективность.

Одним из направлений развития энергосбережения в строительстве являются окна с теплоотражающими стеклами. Использование таких окон в жилищном строительстве позволяет снизить потери тепла через них до 40 % энергии. В этом случае окупаемость дополнительных затрат не превышает 1,5 лет.

Традиционными материалами для изготовления оконных переплетов являются древесина, сталь и алюминий. Среди полимерных материалов для применения в конструкциях оконных и дверных блоков наиболее приемлемы стеклонаполненные термореактивные материалы на основе полиэфирных смол –полиэфирные пластики. Эти материалы обладают всеми положительными качествами полимеров, не имея недостатков, присущих термопластам. Например, полиэфирные стеклопластики обладают теплопроводностью дерева, прочностью и долговечностью металла, биологической стойкостью, влаго- и атмосферостойкостью полимера.

При реконструкции жилых домов, в значительной части случаев надстраиваются мансардные этажи из легких конструкций и материалов с повышенными теплозащитными свойствами.

Перспективным решением облегченных конструкций каркасов мансардных этажей являются каркасы с использованием металлодеревянных конструкций, сочетающих преимущества дерева и металла как материалов. Совместная работа металлического листа и обжимающих его деревянных досок позволяет существенно снизить вес конструкции и уменьшить расход металла в 4 раза при обеспечении необходимой несущей способности.

Разработаны варианты возведения мансард укрупненными пространственными блоками.

Конструктивные решения объемных блок-комнат для устройства мансарды обеспечивают максимальное снижение веса и необходимую жесткость элементов для их транспортировки и монтажа. Этим требованиям отвечают, в частности, следующие варианты конструктивных решений.

Металлический каркас, который омоноличивается полистиролбетоном в плоскости пола, покрытия, наружных и внутренних стен. При этом толщина наружных стен и пола принимается по теплотехническому расчету для каждого региона, а межкомнатных и межквартирных стен (перегородок) — с учетом прочностных и звукоизоляционных требований.

Одним из объемных блоков мансарды, разработан по эскизам АИИСТ Управлением строительства № 2 Спецстроя России. Блок состоит из шести панелей — пола, потолка, боковой, фасадной, торцевой стен и кровли. Все панели, кроме кровельной, имеют стальной каркас из “С” — образных гнутых профилей 120х60х4 и 160х60х5, заполненный полистиролбетоном g=300 кг/м3, армированный металлической сеткой Ж 6 мм с ячейками 100х100 мм. Боковые и торцевые панели с обеих сторон обшиваются гипсокартонным листом.

Энергоэффективность мансардных надстроек обеспечивается помимо эффективных ограждающих конструкций также выбором рациональных систем отопления.

Анализ показывает, что при отсутствии резервных мощностей наиболее эффективным решением теплоснабжения мансардных надстроек является использование индивидуальных поквартирных котлов. При этом варианте минимальны как капитальные затраты, так и годовые эксплуатационные расходы.

Энергосберегающие инженерные системы

Как показывает опыт, значительная, а в конкретных условиях – большая доля эффекта энергосбережения может быть получена при модернизации существующих и внедрении новых инженерных систем, энергоисточников, оборудования и контрольно-измерительных приборов по энергосбережению при эксплуатации объектов.

Принципиальными являются три составляющих.

Повышение КПД котельного оборудования; устранение теплопотерь в магистральных и внутриквартальных тепловых сетях; Модернизация систем отопления и горячего водоснабжения зданий, поквартирный учет и регулирование потребления энергоресурсов.

Рекомендуемые мероприятия:

• использование высокопроизводительного котельного оборудования, в том числе локальных котельных контейнерного типа, при размещении которых на крыше зданий исключается необходимость в тепловых сетях;

• переход на автоматизированные индивидуальные тепловые пункты с исключением применения струйных смесителей — насосов (элеваторов) со свободным количественным и качественным регулированием теплоносителя для пофасадной и секционной подачи. Установление режимов отопления для дневного, ночного времени, зимнего и осенне-весеннего периодов, выходного дня, дежурного отопления и т.д.

Переход на автономные, независимые от централизованного теплоснабжения системы горячего водоснабжения с использованием поквартирных газовых или электроводонагревателей и двуставочного тарифа оплаты за электроэнергию.

До 25% от общего возможного эффекта по экономии тепловой энергии можно получить при установке поквартирных приборов учета расходования горячей воды (8–10%) и приборов учета и регулирования систем отопления, способствующих исключению перегрева помещений при межсезонном и временном повышении температуры наружного воздуха и по комнатному регулированию температуры в отопительный период (10–12%).

При реконструкции существующих домов и проектировании новых целесообразно применять принципиально новые системы отопления.

Наибольшее распространение в массовом жилищном строительстве в России получили вертикальные однотрубные системы отопления. В указанных системах невозможно в полной мере реализовать потенциальные возможности энергосбережения.

Организация поквартирного учета расходования теплоносителя в этих системах сложна технически и требует больших материальных затрат.

Существенная экономия тепловой энергии и повышение уровня теплового комфорта в отапливаемых помещениях достигается при применении горизонтальных систем отопления с поквартирным распределением теплоносителя.

Горизонтальные системы отопления могут выполняться в двух вариантах:

• с кольцевой разводкой трубопроводов по периметру наружных стен (рис.5 а);

• с лучевой разводкой и подачей теплоносителя к каждому прибору от специального коллектора по гибким трубопроводам, проложенным в полу по кратчайшему пути (рис. 5 б).

Экономия тепловой энергии при эксплуатации рассматриваемых систем составляет 20–25% за отопительный сезон по сравнению с существующими вертикальными отднотрубными системами отопления.

Ориентировочные расчеты показывают, что при совокупной реализации мероприятий по модернизации инженерных систем, расходы тепла в жилых и общественных зданиях на отопление и нагрев приточного или инфильтрирующего воздуха возможно сократить на 30–40%. При этом единовременные капитальные затраты будут значительно (от 2 до 10 раз) ниже, чем затраты на увеличение термического сопротивления стен.

В целом возможно реально довести расчетные потери тепла в жилых зданиях до уровня достигнутого в передовых странах — 30–35 Вт/м2.

ЗАКЛЮЧЕНИЕ

Очевидно в ближайшие два-три десятилетия, на стыке периодов исчерпания традиционных и недостаточного развития новых энергоисточников, возникнет дефицит энергоресурсов и резкое их удорожание, и задача экономии энергоресурсов станет приоритетной.

В связи с этим в сфере создания, модернизации и эксплуатации строительной продукции доминирующим фактором станет обеспечение минимальных теплопотерь в зданиях за счет разработки и использования энергоэкономичных объемно-планировочных и конструктивных решений, новых с высоким коэффициентом сопротивления теплопередаче строительных материалов и изделий, энергоэффективного оборудования и регулируемых, в том числе нетрадиционных, систем энергообеспечения. Приоритетное направление развития строительных материалов, изделий и оборудования будет принадлежать энергосберегающим видам.

Исходя из изложенного, с достаточной степенью достоверности можно полагать, что развитие конструктивных систем, строительных материалов, изделий и оборудования в начале XXI века будет происходить по традиционным и новым направлениям, удовлетворяющим требованиям энергосбережения, экологической безопасности, технологичности, экономичности, малой трудоемкости возведения, адаптивности к условиям реконструкции и модернизации жилых и производственных зданий.

Дом, в котором выгодно жить

Современный дом должен быть энергоэффективным. Этот термин вошел в оборот не так давно, тем не менее, на FORUMHOUSE уже построено немало энергоэффективных домов – то есть таких, которые максимально экономят энергетические ресурсы. Если тепловая изоляция дома доведена до показателей, близких к абсолютным, и дом не нуждается в получении энергии извне, у него нет системы отопления, его называют пассивным (в отличие от активного, который не только сам обеспечивает свои энергетические потребности, но и делится излишками с общественными сетями). Считается, что в большинстве регионов нашей страны из-за климатических условий даже пассивный дом не построишь, но на опыте пользователей FORUMHOUSE мы разберем, каким может быть максимально приближенный к пассивному энергоэффективный дом, жизнь которого мало зависит от поставщиков электричества и тепла.

Планировка, расположение, освещение

Энергоэффективный дом часто сравнивают с термосом из-за непрерывного, от фундамента до потолка, контура теплоизоляции. И вообще, когда говорят об энергоэффектвности, чаще всего имеют в виду утепление. Но в это понятие укладывается целая система, в том числе – инженерные коммуникации. Стены дома-термоса, конечно, не могут «дышать», для этого существует система вентиляции, которая в энергоэффективном доме будет работать с минимальными теплопотерями.

Строительство энергоэффективного дома, как правило, дороже, чем обычного, поэтому проектировщики всегда имеют в виду, что его эксплуатация должна быть экономически выгодной – тогда через какое-то время затраты окупятся. Поэтому специалисты ставят перед собой задачи теплосбережения, использования естественного освещения и т.п. На энергоэффективность дома влияют также его расположение и планировка.

  • На севере лучше строить дома в меридиональном направлении – это позволит на 30% повысить количество поступающего солнечного света. На юге, напротив, дома рекомендуется размещать в широтном направлении – в таком жилище будет прохладнее, и можно экономить на кондиционировании.
  • Энергоэффективный дом всегда компактный, то есть без эркеров, вычурных галерей и т.д. Смысл в том, чтобы сделать соотношение внутренней и внешней площадей дома как можно меньшим. Чем ближе дом к параллелепипеду, тем он экономнее и энергоэффективнее.

  • В энергоэффективном доме всегда предусмотрены тепловые буферы, пространства между жилье и холодным воздухом улицы и вообще с внешней средой. Таким буфером может быть и гараж, и подвал, и веранда, и различные тамбуры-кладовки и т.п. Это суровая необходимость, потому что…

ShabanovsvУчастник FORUMHOUSE

…в своем доме вы начнете платить за отопление не усредненную цифру за кв. метры, как в квартире, а за конкретное количество энергоносителя, которое потратите на обогрев улицы.

  • Энергоэффективный дом по большей части освещается солнцем. Для этого наиболее востребованные помещения (столовая, детская и т.п.) размещают в южной части дома, а на севере делают те, которым не требуется много света. Окна спальни в идеале должны выходить на восток, и тогда летом электрический свет в ней можно будет вообще не включать.
  • Размер окон в энергоэффективном доме зависит от того, что для вас важнее: экономия на отоплении или на освещении. Обычно все выбирают нормальное освещение.

MgolovanovУчастник FORUMHOUSE

Мои 10 скромных окон по расчету выпускают столько же тепла, что и стены. После принятия дополнительных мер (зашторивание, теплосберегающие шторки на глухих частях) потери составят 20%, но не меньше. Морально я к этому готов — не жить же в темнице.

Но мы можем снизить оконные теплопотери, используя, например, окна с селективными стеклами и различные варианты регулирования теплоизоляции.

Теплоизоляция: стены, кровля и фундамент

Через стены дом теряет до 40% тепла, именно поэтому столько усилий всегда тратится на утепление. Чаще всего участники нашего портала останавливаются на том, что сооружают многослойные системы, например, снаружи обшивают стены утеплителем, например, каменной ватой, на него устанавливают армирующую сетку и затем штукатурят.

АндpейУчастник FORUMHOUSE

Дом я хотел видеть экологичным и энергоэффектиным, поэтому решил сделать внутри тепловой аккумулятор в виде массивных тяжелых стен из полнотелой керамики, утепленных снаружи эффективным утеплителем.

Статья на FORUMHOUSE поможет вам выбрать наилучший вариант современного утеплителя.

Второй вариант теплоизоляции стен – вентилируемый фасад, при котором стены сначала обшиваются утеплителем, а потом на каркас устанавливается облицовка (камень, металл и т.п.). Суть в том, что между утеплителем и облицовкой остается пространство, «тепловая подушка», которая поможет избежать потерь тепла.

Кровлю утепляют теми же материалами, что и стены. Но, несмотря на то, какой именно материал вы предпочтете, слой теплоизоляции из материала с коэффициентом теплопроводности (при равновесной влажности) 0,04 Вт/м2К не должна быть тоньше 24 сантиметров.

10-15% тепла может уходить через фундамент. В 2009 году на FORUMHOUSE свое народное название – УШП – получил такой вид фундамента, как «schwedenplatte», утепленная шведская плита. Этот фундамент в несъемной опалубке из пенополистирола гарантировано защитит дом от утечек тепла. Также для теплоизоляции утепляют пол – или теми же материалами, что и стены, или наливными смесями, такими, как пенно- или газобетон, гранулобетон и т.д.

Вентиляция, отопление, водоснабжение

Без нормальной вентиляции в доме-термосе просто не выжить, но и отапливать улицу тоже не хочется. Многие участники нашего портала уже давно встраивают в систему вентиляции рекуператоры, которые позволяют избежать лишних расходов на отопление. Это работает вот как: воздух выходит из помещения через каналы вентиляции, встречается с рекуператором и отдает ему тепло, от которого нагревается холодный воздух с улицы, который тоже проходит через рекуператор. Таким образом, уличный воздух остается свежим, но становится теплым.

Это устройство стоит достаточно дорого, но на FORUMHOUSE опубликована статья, которая рассказывает, как сделать рекуператор самостоятельно.

Для ГВС и отопления многие участники нашего портала используют солнечные коллекторы. Конечно, полностью обеспечить себя солнечной энергией в наших широтах не получится, и солнечные коллекторы окупят себя не скоро. Но они не просто повышают энергоэффективность дома – они важны еще для самоуважения домовладельца.

Leo2Участник FORUMHOUSE

С нашими сетями окупаемость считается далеко не по стоимости электроэнергии, а по потерям во время аварий в сети. И плюс моральный ущерб от нахождения в темном холодном доме в это время.

Cолнечные коллекторы, установленные на крыше, достаточно просто подключить и к системе ГВС, и отопления. Работают они так: солнце нагревает жидкость, которая циркулирует в коллекторе, она, в свою очередь, нагревает воду в теплоизолированном баке-аккумуляторе. На FORUMHOUSE обсуждается вопрос, насколько эффективны эти устройства в Подмосковье и других регионах, где мало солнечного света. Однако многие люди их себе поставили и активно обмениваются опытом использования. Кстати, многие делают солнечные коллекторы сами.

Oka90Участник FORUMHOUSE

Для примера, гелиосистема в Туле на той неделе при температуре за бортом -18, показывала +64 в контуре коллекторов.

Всю правду и неправду о солнечном отоплении и водоснабжении вы можете узнать на нашем портале.

Еще один популярный на FORUMHOUSE альтернативный способ отопления дома — тепловой насос. Эти устройства способны получать тепло из окружающей среды, на нашем портале это чаще всего грунт и вода. Тепловой насос состоит из испарителя, конденсатора, расширительного вентиля и компрессора, которые соединены замкнутым трубопроводом. Собственно, примером теплового насоса может быть холодильник, только он работает наоборот – на охлаждение. Несмотря на то, что это дорогое оборудование, оно позволит не зависеть от поставщиков тепла, к тому же его тоже можно собрать самостоятельно – на FORUMHOUSE есть пошаговая инструкция.

Значительно повысить энергоэффектвиность дома может конденсационный котел – вещь, также достаточно часто применяемая в домах участников FORUMHOUSE. От обычных газовых котлов они отличаются запредельно высоким КПД, так как отбирают тепло у топочных газов и горячего воздуха, которые у обычных котлов уходят в дымоход и, опять-таки, отапливают улицу.

RomanXУчастник FORUMHOUSE

Если организовывать отопление с нуля посредством конденсатника (особенно если площадь 500 м3+) с высокоэфективной системой, то мероприятие окупится за год-два.

Кроме того, экономить ресурсы помогают функции системы «Умный дом» — они способны снижать температуру в помещении, где никого нет, выключать свет, следить, чтобы вентиляция не работала зря, если воздух и так свежий, закрывать и открывать окна и т.д. Энергосберегающие лампочки, сантехника, которая вполовину сокращает расход воды, также позволят значительно сократить затраты.

Материалы и оборудование, повышающие энергоэффективность жилья, все время совершенствуются. Мир меняется быстро, и, возможно, лет через 20 мы все будем жить в экологичных, энергоэффективных и автономных домах. И это будет совсем другая жизнь – комфортная и свободная от монополистов, с высоким уровнем осознанности и бережным отношением к нашей планете. В чем мы не сомневаемся – участники FORUMHOUSE и тогда окажутся в авангарде прогресса, изучат самые передовые технологии и будут успешно использовать их для своих футуристических самоделок.

На FORUMHOUSE вы сможете посмотреть видео, которое рассказывает о реальном доме, построенном по технологии пассивного домостроения, узнать мнение экспертов и участников нашего портала о том, выгодно ли строить энергоэффективный дом, почитать увлекательнейшую дискуссию о пассивных домах и возможности их строительства в северных регионах России.

Строительство дома всегда тонкий и, требующий максимального внимания, процесс. Кроме того, что каждый владелец дома желает иметь конструкцию надежную и прочную, хочется платить в процессе эксплуатации за электроэнергию, как можно меньше. Идеальный вариант экономии на системах отопления является пассивный дом или энергоэффективный дом. Такое строение имеет ряд особенностей и нюансов в технологии и проектировании.

Описание

Понятие пассивного дома (иначе называют энергосберегающий дом), определяет список технических требований, с которым потребление энергоресурсов в доме составляет 13 %. Показатель энергопотребления за год составляет 15 Вт*ч/м2.

Для сооружения такого дома необходимо придерживаться определенных требований, которые создадут условия низкого энергопотребления. Чтобы в полной мере ознакомиться с пассивным домом необходимо разобрать каждый элемент, составляющий его, по отдельности.

Форма дома

Учитывая, что имеется прямая зависимость тепловых потерь от общей площади дома, то в процессе проектирования пассивного дома важно уделять внимание форме сооружения, как например в купольном доме. Энергосберегающий частный дом должен быть сделан таким образом, чтобы коэффициент компактности находился в пределах нормы. Такой показатель определяет соотношение общей площади дома к его объему.

Справка: Чем меньше значение коэффициента компактности, тем меньше тепла расходуется домом в пустую.

Обязательно при определении формы и площади дома учесть необходимость использования всех будущих комнат и помещений. Нельзя допускать чтобы в пассивном доме присутствовали неиспользуемые или малоиспользуемые комнаты (просторные гардеробные, гостевые или туалетные помещения). На их содержание необходимы существенные затраты энергии. Идеальным вариантом для пассивного дома является сферическая форма конструкции.

Солнечный свет

Поскольку строительство пассивного дома направлено на дальнейшее максимальное сбережение электроэнергии, то важным моментом является использование природного источника энергии, т.е. солнечного света. Для максимальной экономии энергоресурсов в доме пассивным все окна и двери располагают на южной стороне. Одновременно с этим проводить остекление с северной стороны фасада не рекомендуется. Не стоит рядом с пассивным домом сажать и массивные растения, от которых отбрасывается большая тень.

Теплоизоляция

Одним из важных моментов, которые учитывают при строительстве пассивного дома является обеспечение конструкции теплоизоляцией. Важно не допускать ни единой возможности теплопотери. Теплоизоляцией обеспечивают все угловые соединения, окна, двери, фундамент.

В особенности тщательно проводят укладку теплоизоляционных материалов в стены (например, в доме из соломы) и крышу. Добиваются при этом значение коэффициента теплопередачи в 0,15 вт/(м*к). Идеальным показателем является 0,10 вт/(м*к). Материалами, позволяющими добиться вышеуказанных значений, являются: пенопласт со значением толщины 30 см и СИП панели, толщина которых составляет минимум 270 мм.

Светопрозрачные элементы

Учитывая, что через окна в ночное время происходит значительная потеря тепла, необходимо использовать только энергосберегающие виды окон. Стекла, которыми оснащены элементы, служат в качестве солнечных аккумуляторов. Они накапливают энергию солнца на протяжении дня и сводят к минимуму теплопотери ночью.

Сами по себе энергосберегающие оконные конструкции имеют тройное остекление. Внутри пространство их заполняется аргоном или криптоном. Значение коэффициента теплоотдачи составляет 0,75 Вт/м2*К.

Герметичность

Показатель герметичности при строительстве пассивного дома должен быть существенно выше, чем у обычной конструкции. Воздухонепроницаемость достигается за счет обработки всех стыков между элементами конструкции. Это касается и оконных, дверных проемов. Зачастую для такой цели используется герметик гермабутил.

Вентиляционная система

Система для вентиляции в конструкции обычного дома предполагает потери тепла до 50%. Пассивный дом, технологии которого направлены на уменьшение теплопотерь, требует иного подхода. Вентиляция сооружается по рекуперационному типу. Важен в этом вопросе показатель рекуперации, допускаются лишь значение 75% и больше.

Суть подобной вентиляционной системы проста. Количество поступающего воздуха в помещение, а также уровень его влажности регулирует сама система. Свежий воздух, попадая в систему, нагревается благодаря теплому воздуху, которой выходит из помещений. Это позволяет сэкономить энергию для обогрева свежих воздушных масс, поскольку тепло передается ещё холодному воздуху от нагретого в помещении.

Справка: Все вышеописанные системы могут использоваться как энергосберегающие технологии для частного дома по отдельности.

Технология строительства

При желании построить пассивный дом своими руками придётся уделить этому немало времени. Важно при строительстве понимать суть, которую включают в себя энергосберегающие технологии для частного дома. Вариантов использования материалов для строительства и теплоизоляции достаточно много.

Прежде, чем начинать строить пассивный дом самостоятельно, рекомендуется заказать проект такого дома у профессионалов. Они смогут рассчитать все нюансы конструкции и указать необходимые материалы, которые подойдут конкретно для выбранного участка земли.

Если есть желание построить пассивный дом, технологии в его строительстве используются следующие:

  • теплые стены;
  • теплый пол;
  • утепление фундамента;
  • гидроизоляция крыши;
  • использование СИП панелей для стен, пола и крыши.

Можно воспользоваться следующим алгоритмом действий:

  • после того, как был сделан проект пассивного дома, приступают к непосредственно монтажным работам;
  • изначально сооружают фундамент и проводят его утепление. Материалы для этого подбираются индивидуально. Хорошим вариантом для утепления фундамента является пеностекло. Проводится сетка для системы жидкого тёплого пола. После этого приступают к сборке каркаса дома;
  • приступают к сооружению крыши. Для утепления и гидроизоляции при укладке кровельного покрытия монтируют к каркасу утеплительный материал и гидроизоляционную пленку;
  • проводят полную гидроизоляцию стен и пола;
  • приступают к отделке фасада;
  • устанавливают окна и двери;
  • завершающим этапом строительства является финишная отделка фасадной части дома.

Преимущества и недостатки

Из преимуществ, которыми характеризуется пассивный дом, выделяют:

  • главное и основное преимущество — это минимальный расход электроэнергии в процессе эксплуатации;
  • воздух, который поступает в свой дом через вентиляционную систему, всегда чистый. В нем нет пыли, пыльцы и различных вредных веществ;
  • дома не подвергаются усадке, что позволяет заниматься отделочными работами сразу после возведения сооружения;
  • в строительстве используются экологически чистые материалы;
  • в обслуживании пассивный дом неприхотлив, например, при необходимости провести ремонт, объемную работу проводить не потребуется;
  • длительность срока использования составляет 100 лет;
  • возможность возведения в различных и вариациях архитектурных решений;
  • пассивный дом подвергается перепланировке в любое время, поскольку в нём практически полностью отсутствуют внутренние несущие стены.

Из недостатков отмечают такие:

  • постоянство температуры. Во всём доме температурный режим одинаков, т.е. как в спальне, так и в ванной комнате температура одна и та же. В некоторых случаях это доставляет дискомфорт, поскольку для спальни хочется более прохладного микроклимата, а для ванной комнаты больше тепла;
  • нет возможности пользоваться радиаторами, поскольку их попросту нет. Сушить белье или погреться после долгой прогулки возле радиатора не получится;
  • зачастую владельцы пассивных домов сталкиваются с проблемой чрезмерной сухости воздуха. Данная проблема появляется из-за частого открывания входной двери на протяжении дня, в особенности в зимний период;
  • открыть окно и проветрить помещение ночное время суток в пассивном доме также не представляется возможным.

Производители

Из производителей пассивных домов выделяют следующие:

  • Бауен Хаус. Название домостроительного комбината, который строит пассивные дома в России. Предоставляют услуги по проектированию домов. Комбинат предоставляет возможность построить пассивный дом по различным технологиям, например, каркасный, канадской, Passive Heat или купольный энергосберегающий дом, цены на них варьируют в пределах 250-270 у.е. за 1м2.
  • Медный всадник. Строим энергосберегающие дома и не только. Фирма предоставляет как готовые проекты, так и делает их по индивидуальному заказу. Дополнительно предоставляют услугу дизайна интерьера и ландшафта, и помогают при выборе участка для строительства дома. Есть возможность оформить кредит на строительство. В портфолио компании можно увидеть лучше энергосберегающие дома.

Советы и лайфхаки

Для тех, кто хочет построить пассивный дом, пригодятся следующие советы:

  • чтобы обеспечить дому максимальный срок эксплуатации важно правильно осуществлять уход и придерживаться некоторых правил. Необходимо сохранять температурный режим на одном уровне, настраивая правильно систему отопления;
  • нельзя допускать повреждения герметичного слоя дома, например, саморезами или дюбелями и прочими с элементами;
  • не рекомендуется использовать электроприборы для нагрева температуры помещения длительное время.

Полезное видео

Рекомендуется просмотреть для лучшего понимания того, что собой представляют энергосберегающие дома, видео, в котором описаны все особенности подобных конструкций.

Выгодно ли строить энергоэффективный дом

В связи с неуклонным ростом цен на энергоносители и дороговизну подключения газа, всё большее количество застройщиков задумывается о строительстве энергоэффективного дома.

Мы уже рассказывали читателям нашего сайта о том, что такое энергоэффективный дом, и какие технологии используются при его строительстве.

Настало время понять, как рассчитать экономическую целесообразность строительства такого дома.

А помогут нам в этом пользователи FORUMHOUSE.

Из нашего материал вы узнаете:

  • Какой дом энергоэффективный, а какой – нет.
  • Можно ли отопить энергоэффективный дом только электричеством.
  • Как рассчитать необходимую толщину утеплителя.
  • Окупится ли возведение энергоэффективного дома.

Что такое энергоэффективность

Энергоэффективные дома строят в европейских странах уже давно, но для нашей страны подобное жилище всё ещё является экзотикой.

Многие застройщики с недоверием относятся к строительству таких зданий, считая это неоправданной тратой средств.

Разбираемся, так ли это и выгодно ли строить энергоэффективный дом применительно к климатическим условиям большинства зон России, в том числе Москве.

Энергоэффективный (энергопассивный) дом – это строение, в котором затраты, связанные с потреблением энергии, в среднем на 30% меньше, чем в обычном доме. Энергоэффективность недавнего времени можно было определить по коэффициенту сезонного использования тепловой энергии – Е.

  • Е <= 110 кВт*ч /м2/год – это обычный дом;
  • Е <= 70 кВт*ч /м2/год – энергоэффективный;
  • Е <= 15 кВт*ч /м2/год – пассивный.

При подсчёте коэффициента Е учитывается: отношение площади всех наружных поверхностей ко всей кубатуре дома, толщина слоя теплоизоляции в стенах, кровле и перекрытиях, площадь остекления и количество людей, проживающих в здании.

В Европе для определения класса энергоэффективности принято использовать коэффициент ЕР, который определяет количество электроэнергии, затрачиваемой на отопление, ГВС, свет, вентиляцию и работу бытовых электроприборов.

За отправную точку берётся ЕР = 1 и энергетический класс D, т.е. стандартный. Современная классификация домов, принятая в европейских странах, выглядит так:

В обычном, недостаточно утеплённом жилье с большими теплопотерями через ограждающие конструкции, большая часть энергии (до 70%) уходит на отопление.

Можно сказать, что владельцы такого жилища отапливают улицу.

Поэтому в европейских странах уже никого не удивить толщиной утеплителя в стенах в 300-400 мм, а сам контур здания делается герметичным.

Необходимый уровень воздухообмена в доме поддерживается при помощи системы вентиляции, а не мифического «дыхания» стен.

Но прежде чем покупать кубометры утеплителя, необходимо понять, когда дополнительное утепление и весь комплекс мер, связанных со строительством энергоэффективного дома экономически оправданы.

Энергоэффективность в цифрах

В нашей стране отопительный период в среднем длится 7-8 месяцев, а климат более суровый, чем в Европе. Из-за этого возникает масса споров о том, выгодно ли строить у нас энергосберегающие дома. Одним из самых частых утверждений противников энергоэффективного строительства является довод о том, что в нашей стране строительство такого здания обходится очень дорого, а затраты на его возведение не окупятся никогда.
Но вот комментарий участника нашего портала.

СТАСНН

Я в 2012 году, в Нижегородской области, построил энергоэффективный дом в 165 кв. м отапливаемой площади с удельным потреблением энергии на отопление 33 кВт*часов на кв. м в год. При среднемесячной температуре воздуха зимой -17°C затраты на отопление электричеством составили 62,58 кВт*ч в сутки.

Следует заострить внимание на технических характеристиках этого дома:

  • толщина утеплителя в полу – 420 мм;
  • толщина утеплителя в стенах – 365 мм;
  • толщина утеплителя в кровле – 500 мм.

Коттедж построен по каркасной технологии. Система отопления дома – электрические низкотемпературные конвекторы общей мощностью 3.5 кВт. Также в доме смонтирована система приточно-вытяжной вентиляции с рекуператором и грунтовым теплообменником подогрева уличного воздуха. Для снабжения горячей водой дополнительно установлены вакуумные солнечные коллекторы.

Общий счет: в месяц на отопление уходит 3.2 тыс. руб. при круглосуточном тарифе 1.7 руб/кВт*ч.

Также интересен опыт форумчанина Александра Федорцова (ник на форуме Скептик), самостоятельно построившего каркасный дом в 186 кв. м на фундаменте «утепленная шведская плита», с самодельным теплоаккумулятором на 1.7 м3 и с врезанными в него электрическими тэнами.

Скептик

Дом отапливается электричеством через систему водяного тёплого пола. Для отопления используется ночной тариф — 0,97руб./кВт. Ночью теплоноситель в теплоаккумуляторе нагревается до нужной температуры, утром отключается. Кубатура дома — 560м3.

Итог: Зимой, за декабрь, отопление обошлось в 1,5 тыс. рублей. В январе чуть меньше – 2 тыс. рублей.

Как показывает опыт пользователей нашего сайта, строительство энергоэффективного дома по силам любому. Причём, совсем не требуется оснащать его дорогими инженерными системами наподобие рекуператоров воздуха, тепловыми насосами, гелиоколлекторами или солнечными батареями. По мнению форумчанина с ником Toiss, главное – это тёплый замкнутый контур, превосходящий современные СНиПы в три раза, отсутствие мостиков холода, тёплые окна, хорошо утеплённая кровля, фундамент и стены.

Toiss

Чем платить за подключение газа (цена на который постоянно растёт) по 0.5–1 млн.руб., лучше построить энергоэффективный дом площадью до 200 кв.м. При соблюдении технологии строительства и грамотном подходе его возведение экономически оправдано при любых архитектурных и конструктивных решениях.

Энергоэффективность – базовые принципы

Как и чем утеплять дом – один из главных вопросов, возникающих при строительстве.
И думать об этом нужно ещё на стадии проектирования. По мнению Павла Орлова (ник на форуме Smart2305), перед экономическим расчётом оправданной толщины утеплителя надо определиться со следующими исходными данными, а именно:

  1. Площадь планируемого дома;
  2. Площадь и тип окон;
  3. Площадь фасадов;
  4. Площадь фундамента и поверхностей цокольного этажа;
  5. Высота потолков, или внутренний объем дома;
  6. Тип вентиляции (естественная, принудительная).

Smart2305

За основу возьмём дом площадью 170 кв.м, с высотой потолков 3 м, площадью остекления 30 кв. м и площадью ограждающих конструкций 400 кв.м.

Основные теплопотери в доме происходят через:

  1. Окна;
  2. Ограждающие конструкции (крышу, стены, фундамент);
  3. Вентиляцию;

При чоздании проекта экономически сбалансированного дома необходимо стремиться к тому, чтобы теплопотери по всем трём категориям были примерно одинаковы, т.е. по 33,3%. В этом случае достигается баланс между дополнительным утеплением и экономической выгодой от такого утепления.

Максимальные теплопотери происходят через окна. Поэтому при строительстве энергоэффективного дома важно «привязать» его к правильному месту на участке (большие окна смотрят на южную сторону) для максимальной степени солнечной инсоляции. Это позволит уменьшить теплопотери при большой площади остекления. Smart2305

Самое сложное – это уменьшить теплопотери через окна. Разница между различными современными стеклопакетами довольно несущественна и колеблется от 70 до 100 Вт/кв.м.

Если площадь окон равняется 30 кв. м, а уровень теплопотерь – 100 Вт/кв. м, то тепловые потери через окна составят 3000 Вт.

Т.к. уменьшить теплопотери через окна сложнее всего, то при проектировании теплоизоляции ограждающих конструкций дома и системы вентиляции, для сбалансированности, нужно стремиться к тем же значениям – 3000 Вт.

Отсюда общие теплопотери дома составят 3000х3 = 9000 Вт.

Если же пытаться уменьшить только теплопотери ограждающих конструкций, без уменьшения теплопотерь окон, то это приведёт к необоснованному перерасходу средств на утеплитель.

Тепловые потери через ограждающие конструкции равняются сумме потерь через фундамент, стены, крышу. Smart2305

Нужно стремиться к тому, чтобы уравнять тепловые потери через окна с тепловыми потерями через ограждающие конструкции.

Также необходимо уменьшить теплопотери, связанные с вентилированием помещений. По современным стандартам, необходимо чтобы весь объём воздуха в жилом помещении сменялся 1 раз в час. Дому площадью 170 кв. м с высотой потолков 3 м необходимо 500 м3/час свежего уличного воздуха.

Объём высчитывается умножением площади помещений на высоту потолков.

Если обеспечить приток в дом только холодного воздуха с улицы, то тепловые потери составят 16,7х500=8350 Вт. Это не укладывается в баланс энергоэффективного дома, мы не сможем сказать что такой дом энергосберегающий.

Остаётся два выхода:

  1. Уменьшить воздухообмен, но это не отвечает современным нормативам по необходимому воздухообмену;
  2. Уменьшить тепловые потери при подаче холодного воздуха в дом.

Для подогрева уличного холодного воздуха, поступающего в дом, применяется установка систем принудительной, приточно-вытяжной вентиляции с рекуператором. С помощью этого устройства тепло уходящего на улицу воздуха передаётся входящему потоку. Таким образом повышается эффективность вентиляции.

КПД у рекуператоров составляет 70-80%. Читайте нашу статью о том, как самостоятельно построить недорогой и эффективный рекуператор. Smart2305

Установив в дом (из приведённого выше примера) систему принудительно приточно-вытяжной вентиляции с рекуператором, удастся сократить теплопотери до 2500 Вт. Без системы принудительной, приточно-вытяжной вентиляции с рекуператором невозможно достичь баланса тепловых потерь в доме.

Экономическая целесообразность дополнительного утепления

Основной показатель экономической эффективности дополнительного утепления дома – срок окупаемости системы утепления.

Интересен опыт пользователя с ником Андрей А.А, сравнившего затраты на отопление в режиме ПМЖ утеплённого и неутеплённого дома. Для чистоты эксперимента за исходные условия принимаем следующие данные:

  • отопление магистральным газом;
  • теплопотери через ограждающие конструкции – 300кВт/ч/(кв.м.*год);
  • дом имеет срок службы в 33 года.

Андрей А.А.

Для начала я подсчитал годовые затраты на отопление в режиме ПМЖ без дополнительного утепления. После проведённых мною расчётов затраты на отопление неутеплённого дома в 120 кв.м, при его теплопотерях в 300кВт/ч/(кв.м.*год), составили 32 тыс.руб. в год (при условии, что цена за 1 м3 газа до 2030 составит 7.5 руб).

Теперь подсчитаем, какую сумму можно сэкономить, если как следует утеплить дом.

Андрей А.А.

По моим расчётам, дополнительное утепление снизит теплопотери моего жилья приблизительно в 1,6 раза. Отсюда, при затратах на отопление, равных 1,1 млн. рублей за 33 года (32 т.р. в год х 33 года), после утепления можно на стоимости энергии сэкономить 1,1-1,1/1,6=400тыс. руб.

Чтобы получить 100% экономический эффект от дополнительного утепления, необходимо, чтобы сумма, потраченная на дополнительное утепление, не превысила половину суммы, сэкономленной на стоимости энергии.

Т.е. для данного примера затраты на утепление не должны превысить 200 тыс. рублей.

Через год эксплуатации выяснилось, что после дополнительного утепления теплопотери снизились не в 1.6, а в 2 раза, а вся проделанная работа (т.к. утепление проводилось своими силами, а деньги ушли только на покупку утеплителя) многократно окупилась.

Также интересен подход к расчёту рентабельности от дополнительного утепления форумчанина с ником mfcn:

– Рассмотрим следующие гипотетические условия:

  • в доме +20°C, на улице -5°C;
  • отопительный период – 180 дней;
  • дом – с однослойным каркасом, стоимостью 8000 руб/м3, утеплённый минеральной ватой по 1500 руб/м3;
  • стоимость монтажа – 1000 руб/м3 утепления;
  • шаг каркаса – 600 мм, толщина – 50 мм.

Исходя из этих данных, кубометр утепления стоит 3000 руб.

Mfcn

Буду рассматривать теплопотери через стены дома 10х10 м с высотой потолков 3 м. Отсюда 5 см дополнительного утепления стоят 120х0,05х3000=18000 руб. Срок службы – 50 лет. Стоимость тепла – 1,5 руб/кВт*ч.

После всех расчётов mfcn пришёл к выводу, что оптимальная толщина утеплителя для этого здания должна быть не более 20 см: дальнейшее увеличение толщины утеплителя экономически нерентабельно.

Mfcn

По мере увеличения толщины утеплителя (больше 20 см) стоимость вашего жилья растёт линейно, а экономия от утепления значительно уменьшается.

Посмотрим, оправдан ли такой подход.

Smart2305

Утеплять стены необходимо! Толщину утеплителя нужно выбирать, проанализировав, какой экономический эффект даст увеличение толщины утеплителя по сравнению с исходной конструкцией.

При выборе толщины утеплителя нормальный срок окупаемости – 10-20 лет. Почитайте об основных видах современных утеплителей.

Учитывая, что стоимость магистрального газа растёт быстрее инфляции, то можно предположить, что в будущем цены на газ сравняются с ценами на другие энергоносители (которые также растут). Поэтому при расчёте срока окупаемости утепления брать сегодняшние цены на газ в перспективе, что в будущем они останутся на прежнем уровне, через 10-20 лет, неправильно.

PipilatsMotors

Есть такая вещь, как переход количества в качество. При 15 см утепления и более отпадает нужда в батареях, а вот при 10 см они всё ещё нужны. При 25 см утепления можно сидеть только на ночном тарифе, отапливаясь электричеством, а если коттедж теплоинерционный с минимальными теплопотерями, то экономия будет ещё больше.

Ключевая характеристика энергоэффективности – это расходы на отопление!

Подведение итогов

Теперь ясно, стоит ли тратить средства на дополнительное утепление здания. В связи с постоянно растущими ценами на энергоносители вложение средств в возведение энергоэффективного жилья необходимо рассматривать в долгосрочной перспективе.

Также необходимо учитывать развитие строительных технологий и массовое внедрение высокоэффективных видов утеплителей, более продуманных узлов и конструкций коттеджей, альтернативных источников энергии и систем отопления.

Сейчас затраты на строительство энергоэффективного жилья нашей стране на 15-20% больше, чем возведение обычного коттеджа. Но в европейских странах в 90-х годах эта разница доходила до 30-35%, теперь же она составляет менее 8-10%.

Читайте на FORUMHOUSE о строительстве энергоэффективного жилья и о том, может ли отопление электричеством быть дешёвым. Познакомьтесь с дневником расчёта окупаемости от дополнительно утепления дома и алгоритмом расчёта оптимальной толщины утепления. Узнайте, как рассчитать экономическую целесообразность дополнительного утепления.

В этом видео смотрите, как построить энергоэффективный дом. Узнайте о том, что такое энергопассивный дом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *