Альтернативные источники солнечной энергии

Содержание

Солнечная энергия как альтернативный источник энергии: виды и особенности гелиосистем

В последнее десятилетие солнечная энергия как альтернативный источник энергии используется все чаще для отопления и обеспечения зданий горячей водой. Основная причина – стремление заменить традиционное топливо доступными, экологически чистыми и восполняемыми энергоресурсами.

Преобразование солнечной энергии в тепловую происходит в гелиосистемах – конструкция и принцип действия модуля определяет специфику его применения. В этом материале мы рассмотрим разновидности солнечных коллекторов и принципы их функционирования, а также расскажем о популярных моделях солнечных модулей.

Целесообразность использования гелиосистемы

Гелиосистема – комплекс для преобразования солнечной лучевой энергии в тепловую, которая в последствии передается в теплообменник для нагрева теплоносителя системы отопления или водоснабжения.

Эффективность гелиотермической установки зависит от солнечной инсоляции – количество энергии, поступающей в течение одного светового дня на 1 кв.м поверхности, расположенной под углом 90° относительно направленности солнечных лучей. Измерительная величина показателя – кВт*ч/кв.м, значение параметра меняется в зависимости от сезона.

Галерея изображений Фото из Солнечные коллекторы в тандеме с батареями Небольшая солнечная электростанция Солнечные батареи на крыше Простейший вариант подключения гелиобатареи Водяной солнечный коллектор Воздушный солнечный коллектор Самодельный коллектор из полимерной трубы Бак с теплоизоляцией для горячей воды

Средний уровень солнечной инсоляции для региона умеренно-континентального климата – 1000-1200 кВт*ч/кв.м (в год). Количество солнца – определяющий параметр для расчета производительности гелиосистемы.

Использование альтернативного энергетического источника позволяет отапливать дом, получать горячую воду без традиционных энергозатрат – исключительно посредством солнечного излучения

Монтаж системы гелиотеплоснабжения – дорогое мероприятие. Чтобы капитальные расходы оправдали себя, необходим точный расчет системы и соблюдение технологии установки.

Пример. Усредненная величина солнечной инсоляции для Тулы в середине лета – 4,67 кВ/кв.м*день при условии установки панели системы под углом 50°. Производительность гелиоколлектора площадью 5 кв.м рассчитывается следующим образом: 4,67*4=18,68 кВт теплоэнергии за день. Этого объема хватит для подогрева 500 л воды с температуры от 17 °С до 45 °С.

Как показывает практика, при использовании гелиоустановки, собственники коттеджа в летний период могут полностью перейти с электрического или газового обогрева воды на солнечный метод

Говоря о целесообразности внедрения новых технологий, важно учесть технические особенности конкретного гелиоколлектора. Одни начинают работать при 80 Вт/кв.м солнечной энергии, а другим достаточно – 20 Вт/ кв.м.

Даже в южном климате, применение коллекторной системы исключительно для отопления не окупится. Если установка будет задействована исключительно зимой при дефиците солнца, то стоимость оборудования не покроется и за 15-20 лет.

Чтобы максимально эффективно использовать гелиокомплекс, его необходимо включить в систему горячего водоснабжения. Даже зимой гелиолектор позволит «урезать» счета за энергоносители на подогрев воды до 40-50%.

По оценкам экспертов, при бытовом использовании гелиосистема окупается приблизительно за 5 лет. При росте цен на электроэнергию и газ срок окупаемости комплекса сократится

Кроме экономической выгоды «солнечный обогрев» имеет дополнительные плюсы:

  1. Экологичность. Сокращается выброс углекислого газа. За год 1 кв.м гелиоколлектора предотвращает поступление в атмосферу 350-730 кг отработки.
  2. Эстетичность. Пространство компактной ванны или кухни удается избавить от громоздких бойлеров или газовых колонок.
  3. Долговечность. Производители уверяют, что при соблюдении технологии монтажа, комплекс прослужит порядка 25-30 лет. Многие компании предоставляют гарантию до 3-х лет.

Аргументы против использования энергии солнца: ярко выраженная сезонность, зависимость от погоды и высокие первоначальные инвестиции.

Общее устройство и принцип действия

Рассмотрим вариант гелиосистемы с коллектором в качестве основного рабочего элемента системы. Внешний вид агрегата напоминает металлический ящик, лицевая сторона которого изготовлена из закаленного стекла. Внутри короба размещен рабочий орган – змеевик с абсорбером.

Теплопоглощающий блок обеспечивает нагрев теплоносителя – циркулирующая жидкость, передает сгенерированное тепло в контур водоснабжения.

Основные узлы гелиосистемы: 1 – коллекторное поле, 2 – воздухоотводчик, 3 – распределительная станция, 4 – резервуар сброса избыточного давления, 5 – контролер, 6 – бак-водонагреватель, 7,8 – тэн и теплообменник, 9 – клапан термосмесительный, 10 – расход горячей воды, 11 – поступление холодной воды, 12 – слив, Т1/Т2 – температурные датчики

Гелиоколлектор обязательно работает в тандеме с аккумулирующим баком. Поскольку теплоноситель нагревается до температуры 90-130°С, его нельзя подавать непосредственно в краны горячего водоснабжения или отопительные радиаторы. Теплоноситель поступает в теплообменник бойлера. Накопительный бак часто дополняется электрическим нагревателем.

Схема работы:

  1. Солнце нагревает поверхность коллектора.
  2. Тепловое излучение передается поглощающему элементу (абсорберу), в котором содержится рабочая жидкость.
  3. Циркулирующий по трубкам змеевика теплоноситель разогревается.
  4. Насосное оборудование, блок управления и контроля обеспечивают отвод теплоносителя по трубопроводу к змеевику накопительного бака.
  5. Осуществляется передача тепла воде в бойлере.
  6. Охлажденный теплоноситель поступает обратно в коллектор и цикл повторяется.

Нагретая вода от водонагревателя подается в контур отопления или к водозаборным точкам.

При обустройстве отопительной системы или круглогодичного горячего водоснабжения, система комплектуется источником дополнительного подогрева (котел, электрический ТЭН). Это необходимое условие для поддержания заданной температуры

Солнечные батареи в обустройстве частных домов чаще всего используют в качестве резервного источника электроэнергии:

Галерея изображений Фото из Гелиосистема для генерации электроэнергии Зависимость мощности от использованной площади Аппаратура для управления гелиостанцией Автоматизация использования солнечной энергии

Разновидности солнечных коллекторов

Независимо от назначения, гелиосистема комплектуется плоским или сферическими трубчатым гелиоколлектором. Каждый из вариантов имеет ряд отличительных особенностей в плане технических характеристик и эффективности эксплуатации.

Вакуумный – для холодного и умеренного климата

Конструктивно вакуумный гелиоколлектор напоминает термос – узкие трубки с теплоносителем размещены в колбах большего диаметра. Между сосудами образуется вакуумная прослойка, отвечающая за теплоизоляцию (сохранность тепла – до 95%). Трубчатая форма наиболее оптимальна для удержания вакуума и «оккупации» солнечных лучей.

Базовые элементы трубчатой гелиотермической установки: опорная рама, корпус теплообменника, вакуумные стеклянные трубки, обработанные высокоселективным покрытием для интенсивного «поглощения» солнечной энергии

Внутренняя (тепловая) трубка наполнена солевым раствором с низкой температурой кипения (24-25 °С). При нагревании жидкость выпаривается – испарения поднимаются вверх колбы и нагревают теплоноситель, циркулирующий в корпусе коллектора.

В процессе конденсации капли воды стекают в наконечник трубки и процесс повторяется.

Благодаря наличию вакуумной прослойки жидкость внутри тепловой колбы способна закипать и испаряться при минусовой уличной температуре (до -35 °С).

Характеристики солнечных модулей зависят от таких критериев:

  • конструкция трубки – перьевая, коаксиальная;
  • устройство теплового канала – «Heat pipe», прямоточная циркуляция.

Перьевая колба – стеклянная трубка, в которой заключен пластинчатый абсорбер и тепловой канал. Вакуумная прослойка проходит через всю длину теплового канала.

Коаксиальная трубка – двойная колба с вакуумной «вставкой» между стенками двух резервуаров. Передача тепла осуществляется от внутренней поверхности трубки. Наконечник термотрубки оснащен индикатором вакуума.

Эффективность перьевых трубок (1) выше по сравнению с коаксиальными моделями (2). Однако первые дороже и сложнее в установке. Кроме того, в случае поломки, перьевую колбу придется менять целиком

Канал «Heat pipe» – наиболее распространенный вариант передачи тепла в гелиоколлекторах.

Механизм действия основан на размещении в герметичных металлических трубках легкоиспаряющейся жидкости.

Популярность «Heat pipe» обусловлена доступной стоимостью, неприхотливостью обслуживания и ремонтопригодностью. В силу сложности теплообменного процесса максимальный уровень КПД – 65%

Прямоточный канал – через стеклянную колбу проходят параллельные, соединенные в U-образную дугу металлические трубки

Теплоноситель, протекая через канал, нагревается и подается к корпусу коллектора.

Варианты конструкций вакуумного гелиоколлектора: 1 – модификация с нагревательной центральной трубкой «Heat pipe», 2 – гелиоустановка с прямоточной циркуляцией теплоносителя

Коаксиальные и перьевые трубки могут по-разному комбинироваться с тепловыми каналами.

Вариант 1. Коаксиальная колба с «Heat pipe» – наиболее популярное решение. В коллекторе происходит многократная передача тепла от стенок стеклянной трубки к внутренней колбе, а затем к теплоносителю. Степень оптического КПД достигает 65%.

Схема устройства коаксиальной трубки «Heat pipe»: 1 –оболочка из стекла, 2 – селективное покрытие, 3 – металлическое оребрение, 4 – вакуум, 5 – тепловая колба с легкозакипающим веществом, 6 – внутренняя трубка из стекла

Вариант 2. Коаксиальная колба с прямоточной циркуляцией известна как, U-образный коллектор. Благодаря конструкции уменьшаются теплопотери – тепловая энергия от алюминия передается трубкам с циркулирующим теплоносителем.

Наряду с высоким КПД (до 75%) модель имеет недостатки:

  • сложность монтажа – колбы являются единым целым с двухтрубным корпусом коллектора (mainfold) и устанавливаются целиком;
  • исключена замена одиночных трубок.

Кроме того, U-образный агрегат требователен к теплоносителю и дороже «Heat pipe» моделей.

Устройство U-образного гелиоколлектора: 1 – стеклянный «цилиндр», 2 – поглощающее покрытие, 3 – алюминиевый «чехол», 4 – колба с теплоносителем, 5 – вакуум, 6 – внутренняя трубка из стекла

Вариант 3. Перьевая трубка с принципом действия «Heat pipe». Отличительные особенности коллектора:

  • высокие оптические характеристики – КПД около 77%;
  • плоский абсорбер напрямую передает энергию тепла трубке с теплоносителем;
  • за счет использования одного слоя стекла снижено отражение солнечного излучения;

Возможна замена поврежденного элемента без слива теплоносителя из гелиосистемы.

Вариант 4. Перьевая колба прямоточного действия – наиболее эффективный инструмент использования солнечной энергии, как альтернативного источника энергии для нагрева воды или отопления жилья. Высокопроизводительный коллектор работает с КПД – 80%. Недостаток системы – трудность ремонта.

Схемы устройства перьевых солнечных коллекторов: 1 – гелиосистема с «Heat pipe» каналом, 2 – двухтрубный корпус гелиоколектора с прямоточным движением теплоносителя

Независимо от исполнения трубчатым коллекторам присущи следующие достоинства:

  • работоспособность при низкой температуре;
  • низкие тепловые потери;
  • длительность функционирования в течение суток;
  • способность разогревать теплоноситель до высоких температур;
  • невысокая парусность;
  • простота установки.

Основной недостаток вакуумных моделей – невозможность самоочищения от снежного покрова. Вакуумная прослойка не пропускает тепло наружу, поэтому слой снега не тает и перекрывает доступ солнца к коллекторному полю. Дополнительные минусы: высокая цена и необходимость соблюдения рабочего угла наклона колб не меньше 20°.

Коллекторные солнечные приборы, нагревающие воздушный теплоноситель, можно использовать в подготовке горячей воды, если они снабжены накопительным баком:

Галерея изображений Фото из Бак для подготовки горячей воды Структура трубок коллектора для воздушного отопления Нагрев воды в теплонакопителе Устройство управления работой системы

Более подробно о принципе работы вакуумного солнечного коллектора с трубками читайте .

Водяной – оптимальный вариант для южных широт

Плоский (панельный) гелиоколлектор – прямоугольная алюминиевая пластина, закрытая сверху пластиковой или стеклянной крышкой. Внутри короба расположено абсорбционное поле, металлический змеевик и слой теплоизоляции. Площадь коллектора заполнена проточным трубопроводом, по которому движется теплоноситель.

Базовые составляющие плоского гелиоколлектора: корпус, абсорбер, защитное покрытие, прослойка термоизоляции и крепежные детали. При сборке используется матовое стекло с показателем пропускания спектрального диапазона 0,4-1,8 мкм

Теплопоглощение высокоселективного абсорбирующего покрытия достигает 90%. Проточный металлический трубопровод размещен между «поглотителем» и теплоизоляцией. Применяется две схемы укладки трубок: «арфа» и «меандр».

Процесс сборки солнечных коллекторов, нагревающих жидкий теплоноситель, включает ряд традиционных этапов:

Галерея изображений Фото из Шаг 1: Сборка каркаса для монтажа коллекторной группы Шаг 2: Подготовка коллектора к установке трубок Шаг 3: Крепление трубок солнечного коллектора Шаг 4: Теплоизоляция солнечного трубопровода Шаг 5: Регулировка караса по углу наклона Шаг 6: Установка автоматического воздухоотводчика Шаг 7: Соединение коллектора с контуром отопления Шаг 8: Подключение к системе управления

Если отопительный контур будет дополнен линией, поставляющей санитарную воду в ГВС, есть смысл подключить к солнечному коллектору теплоаккумулятор. Простейшим вариантом станет бак подходящей емкости с теплоизоляцией, способной поддерживать температуру нагретой воды. Установить его надо на эстакаду:

Галерея изображений Фото из Изготовление простейшего теплоаккумулятора Установка бака на эстакаду Врезка ветки ГВС и подключение арматуры Прокладка линии ГВС в обустраиваемый дом

Трубчатый коллектор с жидким теплоносителем действует, как «тепличный» эффект – солнечные лучи проникают через стекло и прогревают трубопровод. Благодаря герметичности и теплоизоляции тепло удерживается внутри панели.

Прочность солнечного модуля во многом определяется материалом защитной крышки:

  • обычное стекло – самое дешевое и хрупкое покрытие;
  • закаленное стекло – высокая степень рассеивания света и повышенная прочность;
  • антирефлексное стекло – отличается максимальной поглощающей способностью (95%) за счет наличия слоя, элиминирующего отражение лучей солнца;
  • самоочищающееся (полярное) стекло с диоксид титаном – органические загрязнения выгорают на солнце, а остатки мусора смываются дождем.

Наиболее стойко переносит удары поликарбонатное стекло. Материал устанавливается в дорогих моделях.

Отражение солнечных лучей и поглощающая способность: 1 – антирефлексное покрытие, 2 – закаленное ударопрочное стекло. Оптимальная толщина защитной внешней оболочки – 4 мм

Эксплуатационно-функциональные особенности панельных гелиоустановок:

  • в системах принудительной циркуляции предусмотрена функция оттаивания, позволяющая быстро избавиться от снежного покрова на гелиополе;
  • призматическое стекло улавливает широкий диапазон лучей под разным углом – в летний период КПД установки достигает 78-80%;
  • коллектор не боится перегрева – при переизбытке тепловой энергии возможно принудительное охлаждение теплоносителя;
  • повышенная ударопрочность по сравнению с трубчатыми собратьями;
  • возможность монтажа под любым углом;
  • доступная ценовая политика.

Системы не лишены недостатков. В период дефицита солнечного излучения, по мере увеличения разницы температур, КПД плоского гелиоколлектора значительно падает из-за недостаточной теплоизоляции. Поэтому панельный модуль оправдывает себя в летнее время или в регионах с теплым климатом.

Гелиосистемы: особенности конструкции и эксплуатации

Многообразие гелиосистем можно классифицировать по таким параметрам: метод использования солнечной радиации, способ циркуляции теплоносителя, количество контуров и сезонность эксплуатации.

Активный и пассивный комплекс

В любой солнечной системе преобразования энергии предусмотрен гелиоприемник. Исходя из способа использования полученного тепла различают два типа гелиокомплексов: пассивные и активные.

Первая разновидность – система солнечного отопления, где теплопоглощающим элементом солнечного излучения выступают конструктивные элементы здания. В качестве гелиоприемной поверхности выступают кровля, стена-коллектор или окна.

Схема низкотемпературной пассивной гелиосистемы со стеной-коллектором: 1 – лучи солнца, 2 – полупрозрачный экран, 3 – воздушный барьер, 4 – разогретый воздух, 5- отработанные воздушные потоки, 6 – тепловое излучение от стены, 7 – теплопоглощающая поверхность стены-коллектора, 8 – декоративные жалюзи

В европейских странах пассивные технологии используются при возведении энергосберегающих зданий. Гелиоприемные поверхности декорируют под фальшь-окна. За стеклянным покрытием размещается кирпичная зачерненная стена со светопроемами.

В качестве теплоаккумуляторов выступают элементы сооружения – стены и перекрытия, изолированные полистиролом извне.

Активные системы подразумевают использование самостоятельных устройств, не относящихся к сооружению.

В эту категорию относятся выше рассмотренные комплексы с трубчатыми, плоскими коллекторами – гелиотермические установки, как правило, размещаются на крыше здания

Термосифонные и циркуляционные системы

Гелиотермическое оборудование с естественным движением теплоносителя по контуру коллектор-аккумулятор-коллектор осуществляется за счет конвекции – теплая жидкость с малой плотностью поднимается вверх, охлажденная – стекает вниз.

В термосифонных системах накопительный бак размещается выше коллектора, обеспечивая самопроизвольную циркуляцию теплоносителя.

Схема работы свойственна одноконтурным сезонным системам. Термосифонный комплекс не рекомендуется использовать для коллекторов, площадью более 12 кв.м

Безнапорная гелиосистема имеет широкий перечень недостатков:

  • в облачные дни производительность комплекса падает – для движения теплоносителя требуется большая разница температур;
  • тепловые потери, обусловленные медленным передвижением жидкости;
  • риск перегрева бака ввиду неуправляемости нагревательного процесса;
  • нестабильность работы коллектора;
  • сложность размещения бака-аккумулятора – при монтаже на крыше возрастают теплопотери, ускоряются коррозийные процессы, появляется риск замерзания патрубков.

Плюсы «гравитационной» системы: простота конструкции и ценовая доступность.

Капитальные затраты на обустройство циркуляционной (принудительной) гелиосистемы значительно выше установки безнапорного комплекса. В контур «врезается» насос, обеспечивающий движения теплоносителя. Работа насосной станции управляется контролером.

Дополнительная тепловая мощность, вырабатываемая в принудительном комплексе, превышает мощность, потребляемую насосным оборудованием. Эффективность системы возрастет на треть

Такой способ циркуляции задействован в круглогодичных двухконтурных гелиотермических установках.

Плюсы полнофункционального комплекса:

  • неограниченный выбор месторасположения аккумулирующего бака;
  • работоспособность вне сезона;
  • выбор оптимального режима нагрева;
  • безопасность – блокировка работы при перегреве.

Недостаток системы – зависимость от электроэнергии.

Техническое решение схем: одно – и двухконтурные

В одноконтурных установках циркулирует жидкость, которая впоследствии подается к водозаборным точкам. В зимний период воду с системы надо сливать, чтоб предупредить замерзание и растрескивание труб.

Особенности одноконтурных гелиотермических комплексов:

  • рекомендована «заправка» системы очищенной нежесткой водой – оседание солей на стенках труб приводит к засорению каналов и поломке коллектора;
  • коррозия из-за избытка воздуха в воде;
  • ограниченный срок службы – в пределах четырех-пяти лет;
  • высокий КПД летом.

В двухконтурных гелиокомплексах циркулирует специальный теплоноситель (незамерзающая жидкость с противовспенивающими и антикоррозийными добавками), отдающий тепло воде через теплообменник.

Схемы устройства одноконтурной (1) и двухконтурной (2) гелиосистемы. Второй вариант отличается повышенной надежностью, возможностью работы зимой и длительностью эксплуатации (20-50 лет)

Нюансы эксплуатации двухконтурного модуля: незначительное снижение КПД (на 3-5% меньше чем в одноконтурной системе), необходимость полной замены теплоносителя каждые 7 лет.

Условия для работы и повышения эффективности

Расчет и монтаж гелиосистемы лучше доверить профессионалам. Соблюдение техники установки обеспечит работоспособность и получение заявленной производительности. Для улучшения эффективности и периода службы надо учесть некоторые нюансы.

Термостатический клапан. В традиционных системах теплоснабжения термостатический элемент редко устанавливается, так как за регулировку температуры отвечает теплогенератор. Однако при обустройстве гелиосистемы о защитном клапане забывать нельзя.

Нагрев бака до максимальной допустимой температуры повышает производительность коллектора и позволяет задействовать солнечное тепло даже при пасмурной погоде

Оптимальное размещение клапана – 60 см от нагревателя. При близком расположении «термостат» нагревается и блокирует подачу горячей воды.

Размещение бака-аккумулятора. Буферная емкость ГВС должна устанавливаться в доступном месте. При размещении в компактном помещении особое внимание уделяется высоте потолков.

Минимальное свободное пространство над баком – 60 см. Этот зазор необходим для обслуживания аккумулятора и замены магниевого анода

Установка расширительного бака. Элемент компенсирует температурное расширение в период стагнации. Установка бака выше насосного оборудования спровоцирует перегрев мембраны и ее преждевременный износ.

Оптимальное место для расширительного бачка – под насосной группой. Температурное воздействие при таком монтаже значительно сокращается, и мембрана дольше сохраняет эластичность

Подсоединение гелиоконтура. При подключении труб рекомендуется организовать петлю. «Термопетля» сокращает теплопотери, препятствуя выходу разогретой жидкости.

Технически правильный вариант реализации «петли» гелиоконтура. Пренебрежение требованием становится причиной понижения температуры в баке-аккумуляторе на 1-2°С за ночь

Обратный клапан. Предупреждает «опрокидывание» циркуляции теплоносителя. При недостатке солнечной активности обратный клапан не дает рассеиваться теплу, накопленному днем.

Популярные модели «солнечных» модулей

Гелиосистема «Сокол». Плоский гелиоколлектор, оснащенный многослойным оптическим покрытием с магнитронным напылением. Минимальная способность излучения и высокий уровень поглощения обеспечивают КПД до 80%.

Эксплуатационные характеристики:

  • рабочая температура – до -21 °С;
  • обратное излучение тепла – 3-5%;
  • верхний слой – закаленное стекло (4 мм).

Коллектор СВК-А (Альтен). Вакуумная гелиоустановка с площадью абсорбции 0,8-2,41 кв.м (зависимо от модели). Теплоноситель – пропиленгликоль, теплоизоляция медного теплообменника в 75 мм минимизирует теплопотери.

Дополнительные параметры:

  • корпус – анодированный алюминий;
  • диаметр теплообменника – 38 мм;
  • изоляция – минвата с антигигроскопичной обработкой;
  • покрытие – боросиликатное стекло 3,3 мм;
  • КПД – 98%.

Vitosol 100-F – плоский гелиоколлектор горизонтального или вертикального монтажа. Медный абсорбер с арфообразным трубчатым змеевиком и гелиотитановым покрытием. Пропускание света – 81%.

Ориентировочный порядок цен на гелиосистемы: плоские гелиоколлекторы – от 400 у.е./кв.м, трубчатые солнечные коллекторы – 350 у.е./10 вакуумных колб. Полный комплект циркуляционной системы – от 2500 у.е.

Выводы и полезное видео по теме

Принцип действия солнечных коллекторов и их виды:

Оценка работоспособности плоского коллектора при минусовой температуре:

Технология монтажа панельного гелиоколлектора на примере модели Buderus:

Солнечная энергия – восполняемый источник получения тепла. С учетом роста цен на традиционные энергоресурсы внедрение гелиосистем оправдывает капитальные инвестиции и окупается в ближайшие пять лет при соблюдении техники монтажа.

Что такое солнечная энергия

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.
Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году — «Основные направления государственной политики в сфере повышения энергетической эффективности электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

В каждой части Российской Федерации необходимо зимой обогревать коттедж. Нереально помыслить себе жизнь проживающего в РФ без обогревающей системы жилища. Любой здравый житель хочет разобраться: как улучшить систему отопления дома. Всем россиянам известно, что источники тепла перманентно увеличиваются в цене. На данном интернет портале собрано большое количество разных отопительных систем дома, использующих исключительно уникальные принципы производства тепловой энергии. Любую систему обогрева возможно использовать как отдельный комплекс или комбинировать.

Главное меню » Ветрогенератор для обогрева дома

Энергосбережение и альтернативные источники энергии становятся доступнее. Ветрогенератор для обогрева дома это один из способов использовать дармовую энергию ветра. Электрическая энергия, выработанная вращающимся ветряком, с генератора поступает непосредственно на электронагреватели, напоминающие всем известные кипятильники. Они встроены в корпус теплового аккумулятора большого теплоизолированного бака, наполненного водой. Нагрев воды происходит непрерывно, пока работает генератор. Чем сильнее ветер, тем больше ток и соответственно больше тепловой энергии. Таков вкратце принцип работы системы.

Наш самодельный тепловой аккумулятор связан с обычной системой водяного отопления дома. Поскольку емкость аккумулятора велика, поступление тепла в батареи будет стабильным. А чтобы у аккумулятора не было лишних потерь энергии, он запакован, словно в шубу, в теплоизоляционный материал. Для регулирования и перераспределения теплового потока служат краны-регуляторы. Ушли на работу люди — можно краны немного прикрыть, чтобы тепла в аккумуляторе накопилось к их приходу побольше.

Вода перемещается по трубам самотеком. Ведь теплая вода имеет меньшую плотность, чем холодная, и поэтому она поднимается вверх. А более плотная холодная вода опускается вниз, попадает через нижнюю трубу в аккумулятор, и все начинается сначала. Хотя, конечно, никакого «начала» или «конца» тут нет, а есть лишь постоянное конвекционное движение теплоносителя. Итак, теоретическая картина ясна. Остается построить установку.

Не спешите, сначала нужно рассчитать необходимую мощность генератора. Он должен быть тем мощнее, чем больше теплопотери дома, который мы собираемся обогревать.

Эти теплопотери рассчитываются по формуле: Q = Vqo(t1 — t2 )n, где V — объем здания (м 3 ), t1 — минимально допустимая температура воздуха в помещении, равная 18°С, t2 — минимальная температура наружного воздуха для данного района; qo — объемная теплоемкость здания, для одноэтажных домов принимаемая равной 0,81 Вт/м 3 х град.; n — безразмерный поправочный коэффициент на климатические условия, принимаемый равным: при t2 больше или равно 10°С — 1,2; t2 больше или равно 20°С — 1,1; t2 больше или равно 30°С — 1,0; t2 больше или равно 40°С — 0,9.

Отопление ветрогенераторами

Когда Вы решаете строить себе дом, то задумываетесь об отопительной системе. Обычно это контур отопления и газовый котел. Чтобы реализовать такую систему необходимо купить газовый котел стоимостью 50-100 тысяч рублей и оплатить стоимость подключения к газовой сети, которая может зашкалить за 500 тысяч рублей. Газ в России стоит в среднем 6000 рублей за 1000 кубометров, что примерно 6 рублей за кг газа. Котлы мощностью 15-30 кВт потребляют зимой на дом площадью 100-300 квадратных метров 2-4 кг газа в час. За один отопительный сезон Вы будете платить от 40 до 90 тысяч рублей, за 5 лет это выльется в круглую сумму от 200 до 450 тысяч рублей, за 10 лет от 400 до 900 тысяч рублей, это ещё без учёта роста тарифов. Если их учитывать (тарифы в РФ растут постоянно, а с вступлением в ВТО они станут со временем общеевропейскими) цена за газ через 5-10 лет составит 15000 рублей за 1000 кубометров, то есть отопление за этот период Вам обойдется в сумму от 800 до 1800 тысяч рублей. Итого с учётом подключения к газовой сети отопление за 10 лет обойдется Вам в сумму от 700 тысяч рублей (без учета роста тарифом, на 100 кв.метровый хорошо утепленный дом, со стоимостью подключения не дороже 200 тысяч рублей) до 2 миллионов 400 тысяч рублей.

При всём этом Вам не гарантирована автономность. В России же выгодно использование ветрогенераторов в качестве обогревателей, для этой цели к нему не нужно приобретать доп.оборудование такое как контроллер, аккумуляторы и инвертор. Тепло можно аккумулировать в 1-5 лишних кубометрах воды. 3 фазы с ветрогенератора подключаются напрямую к отопительным ТЭНам, которые встраиваются в обычный котел стоимостью примерно 10 тысяч рублей. Для отопления дома площадью 100-300 кв.метров хватит ветрогенератора мощностью 10-30 кВт. Стоимость такого ветрогенератора в нашей компании вместе с установкой будет от 400 тысяч рублей (10 кВт модель Феникс 15-ВА-10) до 1 млн 100 тысяч рублей ( 30 кВт модель Феникс 45-ВА-30). Для полной гарантии (на случай длительного отсутствия ветра (более недели), незначительный процент времени 10-20% от всех отопительных дней) лучше приобрести пиролизный или газовый котел. Для пиролизного котла подходит твердое топливо (кпд котла около 80%). Если же в качестве запасного выбираете газовый котел, то чтобы сэкономить на подключении к газовой сети лучше покупать сжиженный газ в балонах.

Ветрогенератор является альтернативным источником энергии, наиболее подходящим для домов и хозяйств, удаленных от линий электроснабжения. Сейчас стоимость энергоснабжения домов постоянно растет из-за подорожания нефти и газа. А если учесть, что большая часть электричества вырабатывается сжиганием нефтепродуктов, стоит ожидать, что и оно вырастет в цене. Для домов с централизованным электроснабжением ветрогенераторы помогут сэкономить на оплате за электричество, а в случае аварий в сетях обеспечят автономное снабжение дома энергией.

КАК РАБОТАЕТ ВЕТРОГЕНЕРАТОР?

Ветрогенератор, а точнее ветроэнергетическая установка (ВЭУ) – это целый комплекс оборудования, который включает:

  • собственно ветрогенератор с лопастями;
  • мачту;
  • аккумуляторы;
  • инвертор;
  • шкаф автоматического включения резерва.

Современные ветрогенераторы имеют три лопасти. Более ранние модели имели много лопастей, однако научно доказано, что при меньшем количестве лопастей КПД ветроэнергетической установки больше.

Поскольку ветрогенератор – нестабильный источник энергии, выработанное электричество поступает сначала в аккумулятор, а затем, через инвертор подается потребителю. Инвертор обеспечивает подачу стандартного тока 220 В/50 Гц. При полном штиле аккумуляторные батареи могут обеспечивать автономное снабжение дома электроэнергией до нескольких суток.

Скорость ветра, при которой запускается ветрогенератор – 2-3 м/с. При такой скорости ветра начинается зарядка аккумулятора. В характеристиках ветрогенератора указывается также номинальная скорость ветра. Это скорость, при которой обеспечивается максимальный КПД и ветрогенератор выдает нормальное (расчетное) количество энергии. Она составляет 9-10 м/с. При ураганном ветре свыше 25 м/с ветрогенератор разворачивается таким образом, что площадь вращения его лопастей становится почти перпендикулярна направлению ветра. Этим значительно уменьшается нагрузка на лопасти.

ЦЕЛЕСООБРАЗНОСТЬ УСТАНОВКИ ВЕТРОГЕНЕРАТОРА ДЛЯ ДОМА

Установка ветрогенератора для дома — достаточно сложный процесс, требующий вдумчивого подхода и определенных инвестиций. Принимая решение о целесообразности установки ветрогенератора нужно учитывать среднемесячную и среднегодовую скорость ветра, рельеф местности и характер задач, которые необходимо решить.

В большинстве регионов России и Украины нецелесообразно устанавливать ветрогенератор мощностью более 5 кВт. Такие установки есть смысл применять в местностях со среднегодовой скоростью ветра более 4,5 м/с. Иначе ветрогенератор будет слишком долго окупаться.

Однако небольшие ВЭУ мощностью от 0,1 до 2 кВт вполне себя оправдывают для домашнего или дачного применения практически во всех зонах. Их достоинством является низкая цена.

На практике используют комбинированные энергетические установки, которые могут включать в себя ветрогенератор, солнечные батареи, дизель-генератор и другие источники. В зимнее время применение ветрогенератора для энергоснабжения дома компенсирует падение потока энергии, вырабатываемой солнечными батареями. Дизель-генератор необходим в случае, когда солнечной и ветровой энергии поступает недостаточно.

Для электроснабжения небольшого дома в местности со среднегодовой скоростью ветра более 4 м/с потребуется ветрогенератор мощностью:

150-200 Вт — для покрытия базовых потребностей электроснабжения: освещение, телевизор, радио. Если в доме есть небольшой холодильник, нужен ветрогенератор мощностью 0,5-1кВт.

1-5 кВт – для покрытия всех потребностей электроснабжения, включая работу холодильника, стиральной машинки, другой бытовой техники. При сильном и длительном ветре вырабатываются излишки энергии, которые можно использовать для отопления дома и нагрева воды.

20 кВт – для покрытия всех энергетических потребностей дома, включая отопление.

Данные о среднегодовой скорости ветра можно взять на ближайшей метеостанции. Однако, нет гарантии, что для места, где планируется поставить ветрогенератор, они будут абсолютно верны. Следует учитывать такие местные условия, как рельеф, препятствия и «шероховатость» поверхности. Наиболее благоприятными местами для установки ветрогенератора считаются равнины и возвышенности неподалеку от берега моря или крупной реки, водоема. В местах с вогнутым рельефом, или расположенных рядом с лесом, крупными строениями ветровой поток будет ослаблен.

Точный прогноз выработки ветрогенератора в определенной точке местности могут дать только специалисты. Обычно крупные компании, торгующие ветроэнергетическим оборудованием, имеют карту ветров для каждого региона. В спорных случаях проводится репрезентативное исследование длительностью в 1 год, или на 2-3 месяца ставится метеостанция. Не стоит доверять «спецам», которые, прибыв на место, через десять минут дают заключение о хорошей скорости ветра.

МОНТАЖ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

Небольшой ветрогенератор для дома (до 2 кВт) возможно смонтировать самому. Монтаж ВЭУ большей мощности производится бригадой специалистов.

Мачта ветрогенератора крепится на массивном бетонном фундаменте. Высота мачты домашней ВЭУ – от 6-9 до 18-26 м. Чем выше мачта, тем больше энергии вырабатывает ветрогенератор. Требуемая высота мачты определяется специалистами исходя из местных условий.

Мачта бывает решетчатая или с растяжками. Решетчатая требует меньшей площади для установки, но более массивного фундамента, причем его масса резко возрастает при увеличении высоты мачты. Так мачта высотой 14 м требует бетонного фундамента объемом 3,5 куб.м, а высотой 26,5 м – уже 20 куб.м. Мачта с растяжками при любой высоте требует 5 куб.м бетона в основании, и 4 дополнительных блока для крепления растяжек. Для ее установки нужна большая площадь, чем для решетчатой. К примеру, мачта высотой 18 м устанавливается на квадрате с диагональю 20 м. Также необходимо предусмотреть площадку для заваливания мачты, длина которой на 4 м больше высоты мачты.

Аккумуляторы ВЭУ монтируются в специальном отапливаемом помещении на площади 4 кв.м.

После установки обслуживание ветрогенератора будет минимальным: периодическая проверка надежности крепления лопастей, смазка движущихся деталей.

Согласно российского и украинского законодательств, установка ветрогенератора мощностью до 75 кВт в некоммерческих целях на личном участке не требует каких-либо разрешительных документов от органов власти.

ЭКОЛОГИЯ И БЕЗОПАСНОСТЬ

В качестве недостатков ветрогенератора иногда называют производимый им шум и вибрацию. Современные относительно маломощные ветрогенераторы для дома создают шум порядка 40 децибел, это в два раза тише шума городской улицы. На удалении 20 м от дома ветрогенератор не причиняет абсолютно никакого беспокойства человеку. Ветрогенераторы мощностью до 100 кВт безопасны в плане создания каких-либо вибраций. Однако закрепление достаточно мощного ветрогенератора непосредственно на доме со временем может привести к трещинам в стенах.

Мелкие животные не любят жить рядом с ветрогенератором, и стараются держаться на расстоянии нескольких сотен метров от места его установки. Поэтому ветрогенератор в огороде способен отпугивать кротов и грызунов. Крупный скот, например коровы и овцы, никак не реагирует на шум ветрогенератора.

Понравился материал? Поддержите наш сайт!

Ветроэлектрическ ая установка, называемая проще ветрогенератором. предназначена для производства электроэнергии путем преобразования в неё энергии ветра. Работает по тому же принципу, что и ветряная мельница, только вместо муки на выходе электрический ток. В России данный способ получения электроэнергии только набирает обороты, но учитывая постоянное совершенствовани е оборудования и постепенное его удешевление, в скором времени ветрогенераторы могут получить самое широкое распространение.

Основное преимущество в использовании ветрогенератора – дешевизна эксплуатации. Правильно установленный, он совсем не требует какого-либо топлива и имеет довольно высокий КПД. Естественно, эффективна такая система будет только там, где на протяжении всего года дуют ветра нужной силы. Однако в случае если объект, который вы собираетесь обеспечить электричеством находится в подходящем месте, вы сможете получать электроэнергию буквально из воздуха, что в итоге окупит затраты на приобретение и установку ветрогенератора.

Устройство домашнего ветрогенератора

Мы не будем рассматривать здесь большие промышленные ВЭУ, цена которых превосходит 1 млн евро, и перейдем сразу к рассмотрению малых ВЭУ, предназначенных для частного использования. К малым ВЭУ относятся те, которые выдают мощность до 100 кВт.

Ветрогенератор для бытового использования состоит из мачты, ротора, лопастей, генератора, контроллера. Комплектуется инвертором, преобразующим постоянный ток в переменный с нужными характеристиками. а также аккумуляторными батареями. Очень хорошо применять с ветрогенератором ИБП, что позволит получить систему бесперебойного питания, работающую максимально долго. Некоторые ИБП приспособлены для подключения к ним ветрогенераторов и солнечных батарей.

Конечно, дороговизна самих устройств часто отпугивает людей, но грамотно подобранное и установленное оборудование позволит в дальнейшем получать электроэнергию без затрат, и не беспокоиться о её удорожании или перебоях с поставкой.

Ветрогенератор для отопления

Отдельно нужно сказать о применении ветрогенераторов для обеспечения отопления. В этом случае из состава системы исключаются некоторые дорогостоящие элементы, такие как АКБ и инвертор. Кроме того вы сможете получать горячую воду для отопления и водоснабжения напрямую, без лишних потерь, вызванных многоступенчатой системой нагрева, а беззатратное отопление и ГВС – это уже действительно ощутимая выгода!

В заключение напомним, что ветроэнергетика в современном понимании взяла старт недавно, оборудование постоянно совершенствуется. удешевляется, и в перспективе у ВЭУ есть все шансы стать одним из основных источников энергии в быту и на производстве.

Другое оборудование:

Прежде чем решить, какой бензогенератор выбрать для дома, мы должны определиться с некоторыми важными параметрами оборудования. Мы расскажем какой выбрать бензогенератор для дома.

Преобразователи напряжения — инверторы Энергия широко используются как в домашних условиях, так и промышленности. Наиболее распространенная серия инверторов — ПН.

Эковатт: Ветрогенератор отапливающий дом

Ветрогенератор отапливающий дом

Наш заголовок — не шутка и не опечатка. Ветер действительно может обогреть жилище. Правда, для этого вам придется собрать установку, о которой и пойдет наш рассказ.

Взгляните на схему. Электрическая энергия, выработанная вращающимся ветряком, с генератора поступает непосредственно на электронагреватели, напоминающие всем известные кипятильники. Они встроены в корпус теплового аккумулятора — большого теплоизолированного бака, наполненного водой. Нагрев воды происходит непрерывно, пока работает генератор: чем сильнее ветер, тем больше ток и соответственно больше тепловой энергии. Таков вкратце принцип работы системы.

Наш самодельный тепловой аккумулятор связан с обычной системой водяного отопления дома. Поскольку емкость аккумулятора велика, поступление тепла в батареи будет стабильным. А чтобы у аккумулятора не было лишних потерь энергии, он запакован, словно в шубу, в теплоизоляционный материал. Для регулирования и перераспределения теплового потока служат краны-регуляторы. Ушли на работу» люди — можно краны немного прикрыть, чтобы тепла в аккумуляторе накопилось к их приходу побольше.

Вода перемещается по трубам самотеком: ведь теплая вода имеет меньшую плотность, чем холодная, и поэтому она поднимается вверх. А более плотная холодная вода опускается вниз, попа-.дает через нижнюю трубу в аккумулятор, и все начинается сначала. Хотя, конечно, никакого «начала» или «конца» тут нет, а есть лишь постоянное конвекционное движение теплоносителя. Итак, теоретическая картина ясна. Остается построить установку?.. Не спешите, сначала нужно рассчитать необходимую мощность генератора. Он должен быть тем мощнее, чем больше теплопотери дома, который мы собираемся обогревать.

На рисунке: 1 — ротор; 2 — короткие растяжки; 3 — узел подшипника; Л — ось ротора; 5 — повышающий редуктор; 6 -— длинные растяжки; 7 — вышна; 8 — генератор; 9 — расширительный бачом; 10 — батареи; 11 — обратная магистраль; 12 — краны-регуляторы; 13 — нагреватели; 14 — емкость теплового аккумулятора.

К примеру, в Одесской области средняя температура наиболее холодной пятидневки —15°С. Для Киевской области это уже —21°С, а для Ленинградской области—25°С. Какую из этих областей взять для примера? Возьмем «среднюю»: Киевскую. Если площадь хорошо утепленного зимнего дома составляет 46 м2 при высоте потолка 2,5 м, то при объеме 46х2,5=115 м3 теплопотери в единицу времени для Киевской области составят: Q = 115х0,81хx1,1 =4000 Вт. Следовательно, для отопления дома в наиболее холодный период с учетом коэффициента запаса (1,15… 1,17) нам нужно иметь теплопро-изводительяость системы отопления примерно 4700 Вт. Такой должна быть минимальная мощность генератора для Киевской области. Думается, для вас не составит труда провести аналогичный расчет, исходя из климатических данных района, где вы живете.

В системе конвекционного отопления лучше всего использовать чугунные радиаторы, например, М-140АО. Они продаются в магазинах стройматериалов. Такие радиаторы дают возможность применить трубы большого диаметра, что очень важно для хорошей циркуляции воды. Кроме того, благодаря большой массе они хорошо накапливают и долго сохраняют тепло, отличаются долговечностью по сравнению со стальными.

Пусть суммарная длина наружных стен самой большой комнаты (см. рис.) составляет примерно 30% от общей длины наружных стен дома. Тогда теплопотери этой комнаты составят 4700×0,3 = = 1410 Вт. Исходя из того, что каждый квадратный метр поверхности батареи имеет теплопотери около 500 Вт, подсчитаем количество секций в самой большой комнате, при условии, что поверхность каждой секции равна 0,3 м2: 1410:(500х0,3)= приблизительно10 секций. Для всех помещений дома суммарное число секции составит приблизительно 32 секции. Эти батареи следует распределить по помещениям так, чтобы в жилых комнатах секций было больше, чем в других местах.

Генератор, мощность которого мы определили, — переменного или постоянного тока с любым рабочим напряжением. В качестве генераторов можно использовать некоторые типы электродвигателей, например, любой двигатель постоянного тока. Если рабочее число оборотов генератора, при которых он производит ток, большее, чем число оборотов нашего ветряного ротора (в зависимости от силы ветра оно может составить 150 — 500 об/мин), нужно использовать повышающий редуктор. Подойдет редуктор от подвесного лодочного мотора мощностью не менее 5 л.с. Применение повышающего редуктора, кроме того, даст возможность расположить генератор горизонтально: ведь лодочный редуктор передает усилие под углом 90°.

Нагревателями служат готовые спирали от электроутюгов и электрокаминов, имеющиеся в продаже. Если мощность одного нагревателя мала, нужно сделать несколько одинаковых нагревателей, которые в сумме будут соответствовать по мощности максимальной мощности генератора. Нагреватели подключаются к генератору параллельно, причем несколько нагревателей монтируется про запас. Каждая спираль вставлена в U-ооразную медную трубку внутренним диаметром 12—16 мм, в зависимости от размера спирали. Трубка припаивается к корпусу емкости обычным оловянным припоем. Для этого удобно использовать бензиновую горелку. Можно применить в этом случае и механическое крепление с уплотнением. Спирали с изоляторами протаскиваются через медную трубку с таким расчетом, чтобы выводы от спиралей начинались внутри емкости на расстоянии 5—6 см от ее стенки. Выводы нагревателей следует изолировать и вывести на переключатель. Таким образом при ремонте части нагревателей остальные продолжают работать.

Тепловой аккумулятор для нашего расчетного варианта представляет собой сварную стальную ванну из листа толщиной 3—5 мм емкостью 5000 литров, помещенную в деревянный ящик, установленный на прочной платформе. Можно применить емкость меньших размеров, но тогда и количество запасенного ею тепла окажется меньше. В качестве теплоизолятора используется шлаковата. Снаружи ящик закрыт двумя слоями пергамина или рубероида и засыпан с боков и сверху керамзитом, или древесными опилками пополам со шлаковатой, или сухим песком. Такой тепловой аккумулятор обеспечивает обогрев помещений в течение 3—4 суток, если генератор по каким-либо причинам отключен.

Роль теплового аккумулятора в крайнем случае может играть емкость из железобетона. Особое внимание в этом случае нужно обратить на опору: она должна быть особенно жесткой и прочной, чтобы емкость не растрескалась. Помещение (подпол) для емкости должно быть сухим в течение всего года, в том числе и при весеннем повышении уровня грунтовых вод.

Ротор представляет собой барабан высотой 1,5 м и диаметром 3,6 м. Лопасти изготавливаются из стандартных листов кровельной оцинкованной стали размером 1,5х2,5 м. Рама лопасти и другие элементы жесткости изготовляются из стальных или алюминиевых уголков. Жесткость конструкции ротора придают верхнее и нижнее кольца, крестовины ( также изготовленные из уголков), тросы с регулировочными элементами.

Ось ротора представляет собой отрезок трубы с внешним диаметром 60—80 мм. Подшипники подбираются заранее, поскольку их размеры должны быть согласованы с размерами оси. При монтаже ротора сначала привариваются крестовины, а затем к ним крепятся на болтах лопасти. Все элементы конструкции следует расположить симметрично относительно осевых линий, поскольку от этого зависит балансировка конструкции.

Мачта сваривается из уголка со стороной 60—80 мм. Для ее большей устойчивости используются растяжки из стального троса. Регулировочные элементы на растяжказх обязательны.

Монтаж ротора и прочего оборудования осуществляется на земле. Поднимать мачты, как и опускать, можно только в безветренную погоду. Конечно, не забудьте окрасить ротор и мачту суриком, а затем масляной краской.

Энергия ветра, альтернативная энергия, ветрогенератор, ветряк своими руками

Солнечно-ветровая энергетика

Солнечно ветровые электростанции — энергетически более выгодная и более стабильная система. В пасмурную погоду или ночью, когда нет солнца, ветровые установки являются основными поставщиками электричества. В солнечную же погоду ветер стихает, при этом увеличивается выработка электроэнергии солнечной составляющей электростанции.

На службе человечества

Использовать солнечное излучение и силу ветра люди научились уже давно. Но не всегда дует ветер и светит солнце, к тому же эти факторы могут зависеть от времени года и суток, поэтому была создана гибридная система, в которую входят ветровые электростанции и солнечные батареи, позволяющая получать электричество круглосуточно целый год. Ветрогенератор является главным звеном, от которого заряжаются батареи. Чтобы работа такой ветроустановки была стабильной и эффективной, к ней добавлены солнечные панели, заряд от которых также поступает на аккумуляторы.

Такая система солнечные батареи плюс ветрогенераторы рассчитана на то, чтобы, при отсутствии одного или обоих энергетических источников, подача электричества не прекращалась. Когда нет ветра или солнца подача электричества осуществляется от батарей аккумуляторов, а на случай того, что заряд иссякнет, обычно делается резервное подключение к генератору или централизованному источнику. В этом случае батареи снова берут заряд, а потребители обеспечиваются электричеством.

Гибридные электростанции имеют перспективу использования только в районах, где солнечные и ветровые потенциалы достаточно высоки. Совместная энергия солнца и ветра может быть использована только в тех климатических и географических зонах, где она достаточно высока.

Когда проектируются комбинированные солнечно-ветровые установки, то обязательно учитывается потенциальная энергия, которую могут давать солнечные батареи и ветрогенераторы. От конкретных условий климата зависит, какая часть такой электростанции будет основной, а какая – вспомогательной. При монтаже такой установки может быть использовано несколько ветрогенераторов и фотоэлектрических модулей.

Использование энергии

На сегодняшний день альтернативная энергетика в России только начинает развиваться, однако, все чаще люди хотят использовать неиссякаемые источники энергии, которые не загрязняют атмосферу и природу, не вредят экологии, и при этом дают свет и тепло. В научных кругах давно подсчитано, что недельное количество поступающей энергии Солнца в несколько раз превышает мировые запасы топливных ресурсов планеты. Однако используется этот потенциал в мизерных количествах, считается чуть ли не экзотическим, а промышленное применение такой энергии – это отдаленное будущее.

Для создания современных ветро-солнечных установок необходимы не только финансы и материальные затраты, нужны разработки научно-технического плана. Сейчас выпускаются солнечные электростанции, работающие в вакуумном режиме, способные давать энергию в любой климатической зоне при любой погоде. Однако из стоимость достаточно высока и установка окупается не так быстро. Ветровые станции, собирающие энергию на батареи, тоже не всегда могут обеспечить необходимым электричеством. Использование альтернативной энергетики, когда работает энергия солнца и ветро-энергия, может решить этот вопрос.

Все электростанции, работающие по традиции на углеводородном топливе, загрязняют атмосферу, атомные станции – вообще очень опасный вид выработки электричества. А солнечно-ветровая энергетика способна полностью решить вопрос с экологией, дать необходимое количество электричества, при этом она абсолютно безопасна. Использовать такие ветро-солнце-электростанции можно в любой точке планеты, потому что плотность потока солнечного излучения достаточно высока. Есть географические места, где солнце светит практически круглый год, добавив к такому потоку силу ветра, и установив ветрогенераторы, можно получить невероятную по мощи энергию.

Комплектация

Когда энергия солнца и ветра используется совместно для выработки электричества, система становится более надежной. При использовании нескольких энергетических источников аккумуляторные батареи можно уменьшить в размере. В отличие от солнечных модулей, ветрогенераторы вырабатывают более дешевое электричество. В такие гибридные ветровые электростанции устанавливаются ветро-стояки, фотоэлектрические модули и другие компоненты высокого качества, которые надежны и долговечны.

Использовать такие установки можно для любых объектов, причем эти системы рассчитаны так, что их можно объединять с дизельными генераторами и централизованной подачей электричества. В стандартную комплектацию гибридной электростанции входит:

  • ветрогенератор
  • башня
  • солнечные панели
  • солнечный контроллер (МРРТ)
  • инвертор с зарядным устройством
  • автоматический выключатель
  • гелиевые аккумуляторы
  • кабель для соединения с аккумуляторами
  • кабель для ветрогенератора
  • кабель для фотоэлектрических модулей
  • температурный батарейный датчик

Новые разработки

Сегодня самой мощной в мире ветростанцией является Jaisalmer Wind Park, расположенная в Индии, штат Раджастхан, производительностью 1064 Мвт, второй по мощности ветровой электростанцией стала RoscoeWindFarm в Техасе. Ее производительность 781,5 МВт, а работают там 627 ветротурбин.

Среди солнечных установок, обеспечивающих энергией население, в 2013 году заняла первое место Agua Caliente Solar Project, расположенная в США, штат Аризона, а второй по мощности стала индийская фотоэлектрическая станция, построенная в 2012 году, но уже через год выдающая 214 МВт энергии.

Последний проект, стоимость которого равна 1,5 миллиарда долларов – это разработка компании SWET. Это абсолютно новый взгляд на альтернативную энергетику, позволяющий увеличить вырабатываемую мощность до 435 МВт в год. Эта установка рассчитана на работу солнца и ветра, однако, зависит от их капризов намного меньше, чем обычные электростанции.

Внешне эта система напоминает очень высокую башню атомной электростанции (685 м) при диаметре 60 м. Строят это сооружение в пустыне, где очень жарко и сухо, причем солнце светит почти круглый год. За счет таких условий прогрев башни будет очень сильным, поэтому энергия солнца будет преобразовываться в энергию тепла. Весь периметр башни – это клапаны с распыляемой водой, которая необходима для охлаждения воздуха. В результате холодные воздушные потоки будут со скоростью 80 км/час устремляться вниз, вращая ветрогенераторы. Однако рентабельность такой установки в северных климатических зонах остается под вопросом.

Абсурдный миф, что солнечная энергия и ветроэнергетика решат энергетические проблемы

Поскольку американская нефтяная индустрия продолжает сыпаться под тяжестью долгов и из-за падающего EROI (Energy Returned On Investment), аналитики все еще предполагают, что солнечная/ветровая энергетика решит все энергетические проблемы. Хотя существует много веских причин, по которым солнечная и ветровая энергия не сможет обеспечить необходимые энергетические потребности в будущем. Одна из наиболее весомых: требуется сжигание огромного количества угля, природного газа и нефти для производства возобновляемых источников энергии.

Таким образом, солнечная и ветровая энергии представляет собой не что иное, как производные ископаемого топлива или деривативы угля/газа/нефти. Без сжигания ненавистного угля, природного газа и нефти солнечные панели и ветряные турбины не смогут существовать. Например, требуется около 2000 фунтов редкоземельных минералов для производства ветровой турбины мощностью 3 мегаватта. Мало того, что эти редкоземельные минералы должны быть извлечены из земли и обработаны, их нужно транспортировать на заводы, которые производят ветряные турбины.

Поскольку большая часть редкоземельных минералов поступает из Китая, мало кто знает о загрязнении при их добыче и переработке. Компании США могут сколько угодно демонстрировать то, какие они ЗЕЛЕНЫЕ, устанавливая ветрогенераторы, просто помните о тех многих по всему миру, которые получают удовольствие от загрязнения …. Не вижу, значит нет.

Таким образом, без сжигания большого количества угля, природного газа и нефти солнечная/ветровая энергетика невозможна. Однажды мы поймем этот простой принцип. Если добыча нефти падает, то это же ожидает солнечную/ветровую энергетику. Это так просто. США пока планируют установку газовых электростанций, а не солнечных и ветровых.

Причина этого – низкая цена на природный газ. Рынок полагает, что технологии сделали добычу сланцевого газа недорогой. Но свободные денежные потоки крупных производителей природного газа в США показывают другое:

Если отбросить чепуху о чуде сланцевой нефти и сланцевого газа, которая исходит от мейнстрим медиа, то здравый смысл подсказывает, что у нас серьезные проблемы. Темпы внедрения солнечных установок в США значительно сократятся в 2018 г. по сравнению с предыдущими годами.

Это, безусловно, плохая новость для солнечной индустрии, поскольку для США необходимо увеличивать солнечную генерацию на 250000 МВт в год в течение нескольких десятилетий, чтобы хоть как-то заместить уголь и газ. Следует ли полагаться на ветер и солнце, чтобы решить энергетические проблемы? Нет ПЛАНА B. Единственная опция – попытка хоть как-то обуздать антирост (DE-GROWTH). Но это вряд ли сработает, поскольку слишком много людей, партий и корпораций сосредоточены только на всемогущем долларе. Это означает, что … мы продолжим жать гашетку в пол до тех пор, пока не отвалятся колеса, а авто не уйдет в клиф.

Для немногих, кто не понимает, что солнце и ветер не способны решить будущие энергетические проблемы, итоговый график:

Как только добыча сланцевой нефти в США накроется медным тазом, вместе с рынком, не ожидайте увеличения солнечных или ветровых установок в будущем. После того, как в США и в мире добыча нефти окончательно пойдет на спад, также на спад пойдет солнечная и ветровая энергетика.

Комментарий автора:

Автор затронул крайне важную тему, но не раскрыл ее в полной мере: EROI. Здесь, на АШ, много публикаций по возобновляемой энергетике, рассматриваются проблемы неэффективности, субсидий, пилы и пр. Это все так. Но основная проблема — EROI. В недавней статье (Альтернативная энергетика, давай до свиданья) затрагивалась проблема EROI. В комменах я высказал точку зрения, точно совпадающую с оценкой автора этой статьи, за что был нещадно заклеван продвинутыми знатоками ВИЭ.

Тема EROI ВИЭ, видимо, тянет на отдельную тему. Первые исследования относятся к 70-м годам прошлого века. Это не случайно, учитывая исторический фон: пик нефти в США, нефтяное эмбарго и начало финансирования сланцевого газа/нефти, которые выстрелят только через 20+ лет. Значения EROI важны для общего понимания, но вычисления EROI («наука сама в себе») показывают, что нет общепринятой методологии и нет понятного видения. Отсюда значительные расхождения в оценках. Например, недавнее исследование показало, что EROI угля рано 95, при этом китайцы говорят про EROI своего угля в 29,6 (а это почти половина мировой добычи). Единственное, в чем сходятся: ископаемое топливо пока имеет высокое EROI, а ВИЭ — низкое (сюда же относится и сланцевая нефть). Сторонники ВИЭ утверждают, что EROI ВИЭ прогрессирует на глазах. Но, при расчетах EROI главную проблему составляют «границы»:

Проблема подсчета производимой и потребляемой энергии состоит в том, насколько далеко в цепочке добавленной стоимости необходимо смотреть. Более очевидная проблема связана с энергией в знаменателе, но есть похожие проблемы, которые относятся к числителю. Это можно рассматривать как несколько разных уровней в цепочке добавленной стоимости, например: (1) прямое поступление энергии, (2) модернизация энергии на разных стадиях, (3) энергозатраты, необходимые для производства оборудования, (4) энергия, необходимая для поддержания рабочей силы от транспортных расходов до жилья и продуктов питания. Все это, как правило, снижает EROEI. Очевидно, ни одно исследование не соответствует оценкам EROEI.

Условно говоря: приведенный автором пример в этой статье с РЗЭ обозначает «границы». Но и эти границы условны. Поскольку надо еще учитывать металлоконструкции, бетон и прочее. Это все уменьшает EROI. Некоторые исследователи говорят, что также надо включать расходы на образование, медицину и социальное страхование и прочее, что, вроде как, не имеет никакого отношения к энергии, но, на самом деле (если вдуматься), имеет самое прямое отношение. Т.е. точный подсчет (расширение) границ оставит ВИЭ вообще без «границ». Общие заключения:

«Если мы заменим традиционную энергию на возобновляемую, что как кажется желательным в долгосрочной перспективе, потребуется использование энергоемких технологий для строительства и обслуживания. Таким образом, представляется, что переход от невозобновляемых к возобновляемым источникам энергии приведет к снижению как количеств энергии, так и значений EROI первичных источников энергии, используемых в экономике».

«Возобновляемые источники энергии, особенно связанные с солнечной энергией, имеют низкие значения EROEI, а инфраструктура, необходимая для производства солнечной энергии, использует более источники энергии с высокими значениями EROEI».

Электричество из ветра и солнца. Как регионы РФ осваивают ВИЭ

Узнаем какие ВИЭ-проекты планируются создать в ближайшем будущем в некоторых регионах РФ.

Несколько регионов России, в том числе Мурманская, Волгоградская и Ульяновская области, планируют в ближайшие 2-3 года реализовать проекты в сфере возобновляемой энергетики, запустив солнечные электростанции и ветропарки. Это обеспечит электричеством удаленные районы и снизит негативное воздействие на окружающую среду. Насколько успешны в РФ такие проекты и с какими сложностями сталкиваются регионы при освоении альтернативных источников энергии рассмотрим ниже.

Освоение альтернативных источников энергии в регионах РФ

  • Ставка на ветер
  • На грани окупаемости
  • Энергия Солнца и Земли
  • Перспективы отрасли

Ставка на ветер
Для некоторых регионов РФ использование энергии ветра является практически единственным способом, чтобы обеспечить ресурсами жителей удаленных населенных пунктов. Это особенно актуально для Камчатского края, где с 2011 года реализуется инвестпроект «Обеспечение энергоснабжения изолированных территорий на основе возобновляемых источников энергии». Проект подразумевает строительство ветродизельных комплексов в энергоизолированных населенных пунктах. Власти рассчитывают, что это позволит экономить на топливе около 400 млн рублей в год и снизить темпы роста энерготарифов.
Использование возобновляемых источников энергии актуально для Крайнего Севера и Арктики, где в периоды распутицы доставить топливо в поселки, отрезанные от большой земли, становится невозможным. Как сообщили ТАСС в Министерстве топливно-энергетического комплекса и ЖКХ Архангельской области, региону требуется круглосуточное «обеспечение бесперебойным энергоснабжением достаточно большого числа изолированных населенных пунктов». «К сожалению, стоимость интеграции высокотехнологичных решений, позволяющих использовать ветровую, солнечную или другой вид возобновляемой энергии, крайне высока», — сказали в министерстве.
Ставку на ветроэнергетику делают и власти Адыгеи, рассчитывающие на увеличение инвестиций в экономику региона. Как сообщили ТАСС в пресс-службе главы республики, в сентябре здесь запустят самый крупный в стране ветропарк мощностью 150 МВт. «Ветроэлектростанция поможет восполнить растущие потребности республики в энергомощностях, после запуска ветропарка энергодефицитность Адыгеи сократится на 20%», — уточнили в пресс-службе.

На грани окупаемости
Несмотря на экологичные преимущества ветряных и солнечных электростанций, регионы РФ пока не готовы перейти полностью на этот вид энергии. Среди сдерживающих факторов: высокие затраты на строительство и низкая мощность на выходе. Кроме того, как считают некоторые эксперты, такие проекты имеют долгий срок окупаемости.
В частности, вернуть затраты на строительство ветропарков можно минимум через 8 лет, утверждает министр промышленности и энергетики Ростовской области Игорь Сорокин. Он отметил, что Ростовская область «обладает обширными территориями и хорошим ветропотенциалом». Первые ветропарки мощностью 300 МВт появятся здесь в 2019 году. «Запуск ветроэлектростанций позволит повысить надежность электроснабжения потребителей области, объем выработки электроэнергии и долю энергии на базе возобновляемых источников энергии и распределенной электроэнергии от общей мощности потребленной энергии в Ростовской области до 20% к 2022 году», — сообщил Сорокин.

Как отмечал ранее глава Мурманской области Андрей Чибис, строительство ветропарка в регионе позволит увеличить долю экологически чистых источников энергии и положительно скажется на развитии инфраструктуры Кольского района. Однако существенной доли в объемах энергопотребления он не займет. Для сравнения, Кольская АЭС, на которую приходится 60% выработки энергии в регионе, имеет установленную мощность почти в 10 раз выше, а ее выработка составляет почти в 15 раз больше, чем планируемые показатели ветропарка.
В Мурманской области ветропарк создается на побережье Баренцева моря, неподалеку от села Териберка. Ввод в эксплуатацию запланирован на декабрь 2021 года. По данным региональных властей, его мощность составит 201 МВт, ветроэнергетические установки смогут в течение года производить 750 ГВт/час, что позволит сократить выбросы углекислого газа в атмосферу.
По оценке Министерства топливно-энергетического комплекса и ЖКХ Архангельской области, наиболее перспективным участком для строительства ветропарков признано побережье Белого моря. Однако, чтобы запустить такой объект, требуются «высокие единоразовые затраты». По предварительным оценкам, чтобы модернизировать дизельную электростанцию, расположенную на берегу Белого моря, и «научить» ее работать на энергии ветра или солнца, может потребоваться 80 млн рублей.
«В условиях отсутствия транспортной инфраструктуры с удаленными населенными пунктами, стоимость проектов возрастает в разы, внедрение возобновляемых источников энергии становится на грани экономической нецелесообразности. В условиях территориальной удаленности перспективных мест внедрения возобновляемых источников энергии, высокой стоимости реализации и длительного срока окупаемости проекта, вопрос поиска инвестора носит затруднительный характер», — отметили в министерстве.

Энергия Солнца и Земли

Кроме использования ветра, несколько регионов осваивают и другие альтернативные варианты: например, на Камчатке реализуется региональная программа перевода энергетики на нетрадиционные источники энергии и местные виды топлива. Об этом сообщил ТАСС министр жилищно-коммунального хозяйства и энергетики Камчатского края Олег Кукиль. В рамках этой программы на Мутновском месторождении парогидротерм (в окрестности Мутновского вулкана с самыми мощными на Камчатке многочисленными выходами на поверхность Земли термальных вод и пара) установлены две геотермальные электростанции, в Усть-Большерецком и Быстринском районах — четыре гидроэлектростанции.
В Республике Адыгея начинают осваивать солнечную энергию. Здесь, к концу текущего года компания «Возобновляемые источники энергии» совместно с ГК «Хевел» построит две первые солнечные электростанции (СЭС) суммарной мощностью 8,9 МВт, инвестиции в объекты составят 960 млн рублей. В Волгоградской области уже работает электростанция на базе солнечных модулей. Как уточнили ТАСС в региональном комитете ЖКХ и ТЭК, это Красноармейская СЭС мощностью 10 МВт.
В Краснодарском крае, в Анапе, в инфраструктуру технополиса ЭРА Минобороны РФ внедрили более 100 энергогенерирующих установок, сообщили ТАСС в пресс-службе центра инноваций. По словам собеседницы агентства, один из типов генераторов — это скамейки, оснащенные солнечными аккумуляторами, энергии которых хватает на зарядку гаджетов через USB-разъемы и питание светодиодной подсветки.
Как отмечают эксперты, солнечная энергетика в России имеет большую историю исследований и разработок со времен СССР. Кроме того, СЭС гораздо дешевле в строительстве и обслуживании по сравнению с ветропарками. «Ветряные электростанции требуют регулярного обслуживания — смазывания лопастей. СЭС практически не требуют специального обслуживания», — добавила директор института статистических исследований и экономики знаний НИУ «Высшая школа экономики» Лилиана Проскурякова.

Перспективы отрасли

По оценке экспертов, объем инвестиций, необходимых для развития возобновляемой энергетики в России до 2024 года, превышает 800 млрд рублей. Чтобы поддержать инвесторов в освоении этой перспективной отрасли, государство предлагает им специально разработанные меры поддержки.
«Инвесторов в возобновляемой энергетике, российских и зарубежных, на нашем рынке достаточно. Этот сегмент стал привлекателен благодаря выгодным условиям, которые предлагает государство. Сегодня в России сформирована программа господдержки генерации электроэнергии из ВИЭ, в которой основную роль играют договоры поставки мощности», — отметила Проскурякова.
При этом эксперты считают, что развитие возобновляемой энергетики в стране можно ускорить, если возводить ветропарки или солнечные электростанции на основе отечественных разработок и комплектующих. Это мнение разделяют и представители регионов России, где существующие объекты состоят в основном из импортного оборудования. Так, на Камчатке, в селе Никольское на Командорских островах, работает станция, состоящая из двух французских ветроэнергетических установок, в поселке Усть-Камчатск размещена ветроэнергетическая станция производства Японии. Единственное исключение — Ульяновская область, где в прошлом году начал работать завод по производству лопастей для ветроустановок.
«Первая партия лопастей для ветрогенераторов в настоящее время готовится к отправке в Ростов-на-Дону. Это уникальные технологии и единственное подобное производство в России, которое имеет большой экспортный потенциал. Сейчас на этом производстве занято более 200 сотрудников», — пояснил председатель правительства Ульяновской области Александр Смекалин.
По его словам, сейчас в регионе формируется первый в России «полноценный кластер» возобновляемых источников энергии. «Цель, которую мы перед собой ставили пять лет назад — сделать наш регион базовой территорией для развития ветроэнергетики в масштабах всей страны, — сегодня достигнута. Приятно отметить, что выстраивается кооперация в сфере развития отрасли ветроэнергетики и между нашими компаниями-партнерами», — резюмировал глава правительства Ульяновской области.
Потенциал возобновляемой энергетики будет обсуждаться в ходе международной промышленной выставки ИННОПРОМ, которая пройдет в Екатеринбурге с 8 по 11 июля. В обсуждении примут активное участие РОСНАНО и Фонд инфраструктурных и образовательных программ Технологии для городов. опубликовано econet.ru

Подписывайтесь на наш канал Яндекс Дзен!

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Ветряные электростанции – это наиболее альтернативный вариант экономии электрической энергии на сегодняшний день.

Очень часто, такие установки можно встретить на дачных участках.

Люди используют их в тех местах, где загородные участки удалены от основных электрических сетей. Но это не единственная причина. Большинство людей используют ветроэлектростанции в целях экономии и автономности.

Ветряные электростанции имеют свои особенности, которые необходимо знать потенциальным покупателям, иак как от их компетентности зависит продуктивность работы ветрогенератора.

Главный стимул приобретения ветряного генератора – это, несомненно, его целесообразность. Одним из главных критериев при достижении данной цели являются требования к ветру. Известно, что среднегодовая скорость ветра около 4.0-4.5 м/с., этого показателя более чем достаточно для того, чтобы домашняя ветряная электростанция была выгодна в использовании, то есть давала возможность экономить электроэнергию.

Для того, чтобы оценить скорость ветра в вашем регионе, вы можете воспользоваться картой ветров. Если у вас возникло желание измерить скорость ветра с максимальной точностью, вам стоит приобрести специальный прибор, который вам в этом поможет.

В состав этого изобретения входит деталь, которая носит название анемометр. С помощью неё к вам поступает сигнал равносильный скорости ветра. Также, вам пригодится прибор, который считывает сигналы, которые подаёт анемометр. Существуют и другие приспособления этого типа.

Для того, чтобы данные получились как можно точными, такие приборы нужно устанавливать высоко, чтобы внешние факторы, такие как деревья, различные постройки и прочее, не искажали результаты прибора.

Компоненты устройства

Очень важно при покупке домашних ветроэлектростанций знать её компоненты, это вам даст возможность быть более компетентными в этом вопросе и подобрать наилучшую модель для своего дома.

В состав ветряной электростанции входит:

  1. Ротор с лопастями (в зависимости от модели, ветрогенераторы делятся на двухлопастные, трёхлопастные и многолопастные).
  2. Редуктор, проще говоря, коробка передач. Его задача заключается в регулировании скорости между ротором и генератором.
  3. Защитный кожух — его название говорит само за себя, он предназначен для защиты всех составляющих деталей ветряной электростанции от внешнего воздействия.
  4. «Хвост» ветряной установки — нужен для поворота конструкции по направлению ветра.
  5. Аккумуляторная батарея – её основной целью является накопление электроэнергии. Связано с тем, что погодные условия не всегда благоприятны для ветряной электростанции, а с помощью этой составляющей сохраняется определённый запас энергии.
  6. Инверторная установка – предназначена для преобразования постоянного тока в переменный. Это нужно для обеспечения работы домашних электроприборов.

Типы и принцип работы

Ветряные электростанции делят на типы по следующим четырём критериям:

  1. По направлению оси вращения лопастей (делят на горизонтальные и вертикальные. Вертикальные более устойчивы к внешним условиям, но у них меньшая выработка электроэнергии) .
  2. По количеству лопастей (в этом случае ветрогенераторы бывают двух-, трёх- и многолопастные).
  3. По использованному материалу (выделяют с жёсткими и парусными лопастями. Основное отличие в том, что парусные стоят дешевле, но они менее прочны);
  4. По способу управления лопастями (существуют с фиксированным и изменяемым шагом лопастей. Специалисты рекомендуют фиксированный шаг лопастей, так как изменяемый вызывает затруднения в использовании).

При выборе электростанци,й целесообразно было бы знать, в чём заключается принцип работы ветрогенератора. Принцип действия установки предельно прост. Конструкция состоит из хвостовика с лопастями, закреплёнными на металлической мачте, которые вращаются при помощи ветра и крутят ротор генератора.

Перед подачей тока в аккумуляторный отсек, он проходит через преобразователь, где происходит преобразование переменного тока в постоянный до напряжения в 220 Вольт с частотой в 50 герц и снабжает дом электричеством в безветренную погоду.

Современному ветрогенератору нет необходимости в сильном ветре. Его конструкция столько продумана, что для частного дома достаточно скорости ветра до 4 – 5 м/c.

Преимущества и недостатки

Основные преимущества ветрогенераторов:

  1. Затраты уходят на установку и профилактику прибора. Больше расходов не требуется, так как конструкция не нуждается в топливе для работы.
  2. Вам не нужно контролировать и вмешиваться в работу ветряка, так как выработка энергии происходит всегда, когда есть ветер.
  3. В зависимости от типа генератора, он не будет производить лишний шум.
  4. Приспособлению подходит большинству климатических условий.
  5. Износ деталей незначителен.

Основные недостатки ветряной электростанции:

  1. В определенных режимах или при неправильной установке мачты, ветрогенератор может издавать инфразвук.
  2. Высокая мачта обязательно требует заземления.
  3. Необходимость регулярной профилактики.
  4. Вероятность повреждения приспособления при ураганах и т.д.

Выбор размера и места для размещения

Размер ветряной электростанции является очень важным вопросом для потенциальных покупателей. Для того, чтобы определиться с размерами, вам нужно внимательно изучить – сколько энергии вы потребляете в течение одного месяца? Полученную цифру необходимо умножить на 12 месяцев.

Затем, вам нужно воспользоваться формулой: AEO = 1.64 * D*D * V*V*V.

Она даст возможность рассчитать приблизительное количество электроэнергии, которую вы сможете получить с помощью домашней установки.

Обозначения, которые необходимо знать при использовании формулы:

  1. AEO — электроэнергия, которую вы используете за год.
  2. D – диаметр ротора, который обозначается в метрах.
  3. V – среднегодовая скорость ветра, обозначается в м/сек.

Таким образом, эти подсчёты помогут определить, какой размер генератора вам нужен, в зависимости от вашего расхода электроэнергии.

Задумываясь о приобретении ветряной электростанции для дома, нужно максимально точно изучить все детали связанные с конструкцией, так как от этого зависит то, насколько ваша цель будет удовлетворена.

При размещении ветрогенератора, вам стоит учитывать следующие факторы:

  1. Вблизи вашей установки не должно быть деревьев, разнообразных построек и прочего, что могло бы помешать максимальной продуктивности работы вашего генератора.
  2. Лучше всего установить ветрогенератор на специально сооружённую конструкцию, которая должна быть на пару метров выше, чем преграды расположенные на расстоянии как минимум 200 метров.
  3. Рекомендуется размещать ветроэлектростанции на расстоянии около 30-40 метров от жилых домов, так как они создают определённый шум, который приносит дискомфорт.

Также, вы должны учитывать, что вы не сможете постоянно получать одинаковый результат от вашей ветряной электростанции, так как природные условия меняются, в одном и том же месте могут быть разные порывы ветра, соответственно, и количество получаемой вами энергии будет динамично.

Обзор цен

В большинстве случаев, цена на ветряные электростанции зависит от их мощности. В бытовых условиях вполне достаточно генераторов с мощностью от 5 до 50 кВт.

Более детально о соотношении цен и видах генераторов:

  1. Ветрогенераторы с мощностью 3 кВт /48V – примерная стоимость 93 000,00р. Подобные могут быть использованы не только в качестве дополнительного источника электроснабжения, но и основного. Такие модели в состоянии обеспечить электроэнергией коттедж.
  2. Ветрогенераторы с мощностью 5 кВт /120V – приблизительно 220 100,00 р. Такая конструкция сможет обеспечить энергией целый дом. Вы сможете одновременно включать достаточно большое количество бытовых электрических приборов.
  3. Ветрогенераторы с мощностью 10 кВт/240V – цены в пределах 414 000,00 р. Его достаточно для обеспечения энергией фермерского хозяйства или нескольких домов. Помимо бытовых приборов вы без проблем сможете использовать, к примеру, электрические строительные инструменты весь день. Такие электрогенераторы часто используются для супермаркетов, чтобы обеспечить постоянную работу отделов и видеонаблюдения.
  4. Ветрогенераторы с мощностью 20 кВт/240V – цена такого устройства 743 700,00р. Электростанции такого типа являются очень мощными. Они в состоянии обеспечить электроэнергией целую водонапорную систему. В бытовых условиях он сможет более чем полностью обеспечить энергией огромный дом.
  5. Ветрогенераторы с мощностью 30 кВт/240V – стоимость в пределах 961 800,00 р. Эта модель является настолько мощной, что сможет обеспечить электрической энергией пятиэтажный дом.
  6. Ветрогенераторы с мощностью 50 кВт/380V – приблизительная цена около 3 107 000,00р. Эта модель не рациональна для использования в бытовых условиях, так как она настолько мощна, что сможет с лихвой обеспечить энергией несколько многоэтажных домов.

При покупке домашней электростанции, стоит знать о том, что в большинстве случаев цены указаны за полную комплектацию, но вы можете самостоятельно добавить или исключить определённые составляющие. Это подлежит вашему личному усмотрению.

Эффективность и окупаемость

Ветряные электростанции для дома являются альтернативным решением при экономии электроэнергии. Они получили достаточно широкое распространение.

Для того, чтобы обеспечить энергией целый дом, достаточно использовать один ветрогенератор и при этом не ограничивать себя, экономя на электроэнергии.

Выгодно и то, что для получения такого эффекта достаточно минимальной скорости ветра от 1,8 до 4,5 метра в секунду.

Но погодные условия не всегда подходят для ветрогенератора, поэтому вам нужно приобрести резервный генератор, который обеспечит запас энергии. Это даст возможность повысить продуктивность вашей домашней ветряной электростанции.

Среди положительных сторон установки стоит отметить следующие:

  1. Потратив большую сумму на электрогенератор, вам больше не потребуется тратить денежные средства, так как топливо для работы прибора не нужно. То есть уже за несколько лет ваше приобретение сможет окупиться.
  2. Производительность ветрогенератора не зависит от времени года или других погодных условий, его работа не прекращается даже зимой, что несомненно является плюсом, так как в зимнее время года расход энергии больше чем в другие. Этот факт несомненно свидетельствует о его эффективности и окупаемости.
  3. Износ деталей генератора незначительный, учитывая регулярную профилактику ветрогенератора, которая является необходимой. При правильной и грамотной установке, а также эксплуатации ветряной электростанции для дома, она сможет прослужить вам более тридцати лет, что несомненно является значительным плюсом.

Срок полной окупаемости ветряных электростанций составляет приблизительно 5-7 лет, а далее вы сможете использовать электроэнергии абсолютно бесплатно.

Отзывы пользователей

В большинстве, пользователи отмечают, что они довольны ветряной электростанцией для дома:

Александр, г. Белгород

«3 года назад построил дом в деревне, отказался от местных электростанций. Установил ветрогенератор на 3 квт. Уже 2 года работает, хватает на содержание дома, хотя расход энергии у меня не так велик».

Евгений, г. Москва

«Приобрёл ветряк производства США, заряжающий аккумулятор 12 V. Использовал 3 года, мощности хватало для света, ноутбука, насоса угольного котла. Неплохой вариант сэкономить, только нужно аккумуляторы выбрать качественные, чтобы дольше служили».

Михаил, г. Чебоксары

» Я считаю, что эта установка нужна для частного дома, так как автономное использование энергии более удобное. Выходит дешевле».

Аркадий, г. Киров

«У меня дом двухэтажный, я купил ветрогенератор 2 квт, 4 аккумулятор 12v 150 ah AGM. Этого хватает с головой на свет, телевизор, холодильник там и т.д.»

Принцип работы ветрогенератора

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Альтернативная энергетика для дома своими руками: обзор лучших эко-технологий

Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?

Мы поможем вам разобраться с основными источниками возобновляемой энергии – в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.

В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.

Популярные источники возобновляемой энергии

“Зеленые технологии” позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.

Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.

С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.

Водяная мельница – предшественник насоса автомата, не требующий присутствия человека для совершения работы. Колесо самопроизвольно вращается под напором воды и самостоятельно черпает воду

Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.

В быту для получения возобновляемой энергии широко используют следующие устройства:

  • Солнечные батареи.
  • Тепловые насосы.
  • Ветрогенераторы для дома.

Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.

Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.

При выборе источника альтернативной энергии нужно ориентироваться на ее доступность, тогда максимальная мощность будет достигнута при минимуме вложений

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.

Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Галерея изображений Фото из Расположение солнечной панели на скатной крыше Монтаж солнечных батарей на пологую крышу Конструкция для изменения угла наклона приборов Формирование угла наклона солнечной батареи

Принцип работы системы солнечного электроснабжения

Понимание назначения каждого из элементов системы позволит представить ее работу в целом.

Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
  • Аккумуляторы. Одной аккумуляторной батареинадолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.

Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Изготовление солнечной батареи

Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.

Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.

Солнечную батарею собирают из модулей. Каждый модуль для бытового использования включает 30, 36 или 72 шт. элементов, соединенных последовательно с источником питания с максимальным напряжением около 50 V

Шаг #1 – сборка корпуса солнечной панели

Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:

  • Деревянные бруски
  • Фанера
  • Оргстекло
  • ДВП

Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.

По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.

Правильно выполненные отверстия с шагом 0,15-0,20 м предохранят от перегрева элементы солнечной панели и обеспечат стабильную работу системы

Шаг #2 – соединение элементов солнечной панели

По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.

Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.

Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.

По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.

Каждый из элементов нужно надежно зафиксировать на подложке с помощью скотча либо силикона, в будущем это позволит избежать нежелательных повреждений

После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.

Шаг #3 – сборка системы электроснабжения

Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.

Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.

Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.

Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.

Правильно ориентированные и установленные солнечные панели обеспечивают максимальную эффективность получения солнечной энергии, а также легкость и простоту обслуживания системы

Основные правила установки солнечной панели

От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.

При установке нужно учесть следующие важные параметры:

  1. Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
  2. Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
  3. Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
  4. Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.

Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.

Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.

В ряде промышленных вариантов солнечных батарей предусмотрены устройства слежения за движение солнца. Для бытового применения можно продумать и предусмотреть подставки, позволяющие менять угол наклона панели

Тепловые насосы для отопления

Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении альтернативной энергии для вашего дома. Они не только наиболее удобны, но и экологически безопасны.

Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.

Галерея изображений Фото из Тепловой насос с забором тепла земли или подземной воды Внешний блок теплового насоса воздух-вода или воздух-воздух Взаимосвязь внешней и внутренней составляющих эко-систем Оборудование внутреннего блока теплового насоса

Классификация тепловых насосов

Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.

В зависимости от конечных потребностей тепловые насосы могут быть:

  • Одно-, двух или трехконтурные;
  • Одно- или двухконденсаторные;
  • С возможностью нагрева или с возможностью нагрева и охлаждения.

По виду источника энергии и способу ее получения различают следующие тепловые насосы:

  • Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
  • Воздух – вода. Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
  • Вода – вода. Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
  • Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
  • Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
  • Воздух – воздух. Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.

При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.

При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.

От правильности выбора вида теплового насоса во многом зависит эффективность работы системы и затраты на ее устройство

Принцип работы теплового насоса

Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.

По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).

Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.

Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.

Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.

Низкопотенциальное тепло из грунта, воздуха или воды вместе с теплоносителем попадает в испаритель, где превращается в газ, а далее еще больше сжимается компрессором, в результате чего температура становится еще выше

Сборка теплового насоса из подручных материалов

Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.

Шаг #1 – подготовка компрессора и конденсатора

Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.

После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.

Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.

После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.

Для изготовления конденсатора использован бак из нержавеющей стали объемом 100 л, с помощью болгарки он был разрезан пополам, вмонтирован змеевик и произведена обратная сварка

Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.

Шаг #2 – изготовление испарителя

Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.

Для изготовления змеевика достаточно обмотать медную трубку вокруг стальной трубы диаметром 300-400 мм с последующей фиксацией витков перфорированным уголком

На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.

Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.

Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.

Шаг #3 – обустройство и подключение внешнего устройства

В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.

Из одной скважины будет происходить забор воды с последующей подачей в испаритель.

Энергию подземной воды можно использовать круглогодично. На ее температуру не влияют погодные условия и времена года

Далее отработанная вода будет сбрасываться во вторую скважину. Остается все это подключить к входу в испаритель, к выходу и герметизировать.

В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.

На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.

Устройство и использование ветрогенераторов

Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.

Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.

Галерея изображений Фото из Шаг 1: Подбор деталей для изготовления ветрогенератора Шаг 2: Извлечение двигателя и патрона из ненужной дрели Шаг 3: Детали для устройства крепежного узла ветрогенератора Шаг 4: Установка крепежного узла в собранном виде Шаг 5: Установка подшипника с внутренней стороны пластины Шаг 6: Сборка ветрогенератора и установка на площадкуСборка ветрогенератора и установка на площадку Шаг 7: Крепление лопастей ветрогенератора к пластине Шаг 8: Небольшой самодельный ветрогенераторНебольшой самодельный ветрогенератор

Установка ветрогенератора считается экономически выгодной, если среднегодовая скорость ветра превышает 6 м/с.

Монтаж лучше всего производить на возвышенностях и равнинах, идеальными местами считаются побережья рек и крупных водоемов вдали от различных инженерных коммуникаций.

Для преобразования энергии воздушных масс в электрическую применяются ветрогенераторы, наиболее продуктивные в прибрежных регионах

Классификация ветряных генераторов

Классификация ветряных генераторов зависит от следующих основных параметров:

  • В зависимости от размещения оси могут быть вертикальные вертяки и горизонтальные. Горизонтальная конструкция предусматривает возможность автоповорота основной части для поиска ветра. Основное оборудование вертикального ветрогенератора расположено на земле, поэтому его легче обслуживать, при этом КПД вертикально расположенных лопастей ниже.
  • В зависимости от количества лопастей различают одно-, двух-, трех- и многолопастные ветряные генераторы. Многолопастные ветрогенераторы используют при малой скорости воздушного потока, применяются редко из-за необходимости установки редуктора.
  • В зависимости от материала, используемого для изготовления лопастей, лопасти могут быть парусными и жесткими. Лопасти парусного типа просты в изготовлении и монтаже, но требуют частой замены, так как быстро выходят из строя под воздействием резких порывов ветра.
  • В зависимости от шага винта, различают изменяемый и фиксируемый шаги. При использовании изменяемого шага можно добиться значительного увеличения диапазона рабочих скоростей ветрогенератора, но это приведет к неминуемому усложнению конструкции и увеличению ее массы.

Мощность всех видов приборов, преобразующих энергию ветра в электрический аналог, зависит от площади лопастей.

Для работы ветрогенераторам практически не нужны классические источники энергии. Использование установки мощностью около 1 мВт позволит сэкономить 92 000 баррелей нефти или 29 000 т угля за 20 лет

Устройство ветряного генератора

В любой ветряной установке присутствуют следующие основные элементы:

  • Лопасти, вращающиеся под действием ветра и обеспечивающие движение ротора;
  • Генератор, который вырабатывает переменный ток;
  • Контроллер управления лопастями, отвечает за образование переменного тока в постоянный, который требуется для зарядки аккумуляторов;
  • Аккумуляторные батареи, нужны для накопления и выравнивания электрической энергии;
  • Инвертор, выполняет обратное превращение постоянного тока в переменный, от которого работают все бытовые приборы;
  • Мачта, необходима для подъема лопастей над поверхностью земли до достижения высоты перемещения воздушных масс.

При этом генератор, лопасти, обеспечивающие вращение и мачта считаются основными частями ветрогенератора, а все остальное – дополнительные компоненты, обеспечивающие надежную и автономную работу системы в целом

В схему любого даже самого простого ветряного генератора обязательно должны быть включены инвертор, контроллер заряда и аккумуляторные батареи

Тихоходный ветряной генератор из автогенератора

Считается, что данная конструкция является наиболее простой и доступной для самостоятельного изготовления. Она может стать как самостоятельным источником энергии, так и взять на себя часть мощности существующей системы электроснабжения.

При наличии автомобильного генератора и аккумуляторной батареи все остальные части можно изготовить из подручных материалов.

Шаг #1 – изготовление ветрового колеса

Лопасти считаются одной из наиболее важных частей ветрогенератора, так как их конструкцией определяется работа остальных узлов. Для изготовления лопастей могут быть использованы самые разные материалы – ткань, пластик, металл и даже дерево.

Мы изготовим лопасти из канализационной пластиковой трубы. Основные преимущества данного материала – дешевизна, высокая влагоустойчивость, простота обработки.

Работы выполняются в следующем порядке:

  1. Производится расчет длины лопасти, при этом диаметр пластиковой трубы должен составлять 1/5 от необходимого метража;
  2. С помощью лобзика трубу следует разрезать вдоль на 4 части;
  3. Одна часть станет шаблоном для изготовления всех последующих лопастей;
  4. После обрезки трубы заусеницы на краях необходимо обработать наждачной бумагой;
  5. Вырезанные лопасти необходимо зафиксировать на заранее приготовленном алюминиевом диске с предусмотренным креплением;
  6. Также к этому диску после переделки нужно прикрутить генератор.

Учтите, что труба из ПВХ не обладает достаточной прочностью и не сможет противостоять сильным порывам ветра. Для изготовления лопастей лучше всего применять трубу из ПВХ толщиной не менее 4 см.

Далеко не последнюю роль на величину нагрузки оказывает размер лопасти. Поэтому не лишним будет рассмотреть вариант снижения размера лопасти за счет увеличения их количества.

Лопасти ветрогенератора изготовлены по шаблону из ¼ ПВХ канализационной трубы диаметром 200 мм, разрезанной вдоль оси на 4 части

После сборки следует произвести балансировку ветрового колеса. Для этого требуется закрепить его горизонтально на штативе в закрытом помещении. Результатом правильной сборки будет неподвижность колеса.

Если же происходит вращение лопастей, необходимо выполнить их подточку абразивом доя уравновешивания конструкции.

Шаг #2 – изготовление мачты ветрогенератора

Для изготовления мачты можно использовать стальную трубу диаметром 150-200 мм. Минимальная длина мачты должна составлять 7 м. Если на участке есть препятствия для перемещения воздушных масс, то колесо ветрогенератора нужно поднять на высоту, превышающую препятствие не менее, чем на 1 м.

Колышки для закрепления растяжек и саму мачту необходимо забетонировать. В качестве растяжек можно использовать стальной либо оцинкованный трос толщиной 6-8 мм.

Растяжки мачты придадут ветрогенератору дополнительную устойчивость и снизят расходы, связанные с устройством массивного фундамента, их стоимость гораздо ниже остальных типов мачт, но требуется дополнительная площадь для растяжек

Шаг #3 – переоборудование автомобильного генератора

Переделка состоит лишь в перемотке провода статора, а также в изготовлении ротора с неодимовыми магнитами. Для начала нужно высверлить отверстия, необходимые для фиксации магнитов в полюсах ротора.

Установка магнитов выполняется с чередованием полюсов. По завершению работ межмагнитные пустоты нужно заполнить эпоксидной смолой, а сам ротор обернуть бумагой.

При перемотке катушки нужно учесть, что эффективность работы генератора будет зависеть от количества витков. Катушку необходимо мотать по трехфазной схеме в одном направлении.

Готовый генератор нужно испытать, результатом правильно выполненной работы будет показатель в 30 В при 300 оборотах генератора.

Переоборудованный генератор готов к проведению испытаний по выдаваемому номинальному напряжению перед финальным монтажом всей системы тихоходного ветрогенератора

Шаг #4- завершение сборки тихоходного ветрогенератора

Поворотная ось генератора выполняется из трубы с насаженными двумя подшипниками, а хвостовая часть вырезается из оцинкованного железа толщиной 1,2 мм.

Перед креплением генератора к мачте необходимо изготовить раму, лучше всего для этого подойдет профильная труба. При выполнении крепления нужно учесть, что минимальное расстояние от мачты до лопасти должно быть больше 0,25 м.

Под действием потока ветра происходит движение лопастей и ротора, в результате достигается вращение редуктора и получается электрическая энергия

Для работы системы после ветрогенератора нужно установить контроллер заряда, аккумуляторные батареи, а также инвертор.

Емкость батареи определяется мощностью ветрогенератора. Данный показатель зависит от размеров ветряного колеса, количества лопастей и скорости ветра.

Изготовление солнечной панели с пластмассовым корпусом, перечень материалов и порядок выполнения работ

Принцип работы и обзор геотермальных насосов

Переоборудование автогенератора и изготовление тихоходного ветрогенератора своими руками

Отличительной чертой альтернативных источников энергии является их экологическая чистота и безопасность.

Довольно малая мощность установок и привязка к определенным условиям местности позволяют эффективно эксплуатировать только комбинированные системы традиционных и альтернативных источников.

8 необычных источников альтернативной энергии для дома, офиса и отдыха


Альтернативные источники энергии для дома и офиса

Зачем каждый месяц платить энергокомпаниям за электричество, если можно самостоятельно обеспечивать себя энергией? Все больше людей в мире понимает эту истину. И потому сегодня мы расскажем про 8 необычных источников альтернативной энергии для дома, офиса и отдыха.

Солнечные панели в окнах

В наше время самым распространенным в быту альтернативным источником энергии являются солнечные панели. Традиционно их устанавливают на крышах частных домов или во дворах. Но с недавних пор стало возможным размещать эти элементы прямо в окнах, что позволяет использовать такие батареи даже владельцам обычных квартир в многоэтажных домах.


Прозрачные солнечные панели

При этом уже появились решения, позволяющие создавать солнечные панели с высоким уровнем прозрачности. Именно такие энергетические элементы и следует устанавливать в окнах жилых помещений.

Прозрачные солнечные панели в окнах

К примеру, прозрачные солнечные панели разработали специалисты из Мичиганского Государственного Университета. Эти элементы пропускают 99 процентов проходящего через них света, но имеют при этом коэффициент полезного действия в 7%.

Uprise – ветряная турбина на прицепе

Компания Uprise создала необычную ветряную турбину высокой мощности, которую можно использовать как в быту, так и в промышленных масштабах. Этот ветряк располагается в прицепе, который может передвигать за собой внедорожник или дом на колесах.


Uprise – ветряная турбина на прицепе

В сложенном состоянии с турбиной Uprise можно ездить по дорогам общего пользования. Но в развернутом состоянии она превращается в полноценный ветряк высотой пятнадцать метров и мощностью 50 кВт.

Uprise – ветряная турбина на прицепе

Uprise можно использовать во время путешествий в доме на колесах, для обеспечения энергией отдаленных объектов или обычных частных жилых домов. Установив эту турбину у себя во дворе, ее владелец может даже продавать излишки электричества соседям.

Uprise – ветряная турбина на прицепе

Makani Power – электростанция на основе воздушного змея

Makani Power – это проект одноименной компании, перешедшей недавно в подчинение полусекретной лаборатории инноваций Google X. Идея данной технологии одновременно проста и гениальна. Речь идет о небольшом воздушном змее, который может летать на высоте до одного километра и вырабатывать электричество.


Makani Power – электростанция на основе воздушного змея

Летательный аппарат Makani Power оснащен встроенными ветряными турбинами, которые будут активно работать на высоте, где скорость ветра значительно больше, чем на уровне земли. Полученная энергия в данном случае передается по шнуру, соединяющем воздушного змея с базовой станцией.

Makani Power – электростанция на основе воздушного змея

Энергия будет также вырабатываться от движений самого летательного аппарата Makani Power. Дергая под силой ветра трос, этот воздушный змей заставит крутиться динамо-машину, встроенную в базовую станцию.

Makani Power – электростанция на основе воздушного змея

При помощи Makani Power можно обеспечить энергией как частные дома, так и отдаленные объекты, куда нецелесообразно проводить традиционную линию электропередач.

Betaray – стеклянный шар для аккумуляции солнечной энергии

Современные солнечные батареи все еще имеют весьма низкий коэффициент полезного действия. А потому для получения от них высоких производственных показателей приходится застилать панелями достаточно большие пространства. Но технология с названием Betaray позволяет увеличить КПД примерно в три раза.


Betaray – стеклянный шар для аккумуляции солнечной энергии

Betaray – это небольшая по размерам установка, которую можно расположить во дворе частного дома или на крыше многоэтажки. В ее основе лежит прозрачная стеклянная сфера диаметром чуть меньше одного метра. Она аккумулирует солнечный свет и фокусирует его на достаточно небольшую фотоэлектрическую панель. Максимальный КПД данной технологии имеет потрясающе высокий показать в 35 процентов.

Betaray – стеклянный шар для аккумуляции солнечной энергии

При этом сама установка Betaray является динамической. Она автоматически подстраивается под положение Солнца на небе, чтобы в любой момент работать на максимуме возможностей. И даже ночью эта батарея вырабатывает электричество, преобразуя свет от Луны, звезды и уличного освещения.

Betaray – стеклянный шар для аккумуляции солнечной энергии

Little Sun – солнечный подсолнух для бытовых нужд

Датско-исландский художник Олафур Элиассон дал старт необычному проекту с названием Little Sun, который объединяет в себе творческое начало, технологии и социальные обязательства успешных людей перед обездоленными. Речь идет о небольшом устройстве в виде цветка подсолнуха, которые в течение дня наполняется энергией от солнечного света, чтобы вечерами нести освещение в самые темные уголки планеты.


Little Sun – солнечный подсолнух для бытовых нужд

Каждый желающий может пожертвовать деньги на то, чтобы солнечный светильник Little Sun появился в жизни какой-нибудь семьи из Страны Третьего Мира. Лампы Little Sun позволяют детям из трущоб и отдаленных деревень отдавать вечера под учебу или чтение, без которых невозможен успех в современном обществе.

Little Sun – солнечный подсолнух для бытовых нужд

Светильники Little Sun можно также приобрести и для себя, сделав их частью собственной жизни. Эти устройства можно использовать при выезде на природу или для создания потрясающей вечерней атмосферы на открытых площадках.

Little Sun – солнечный подсолнух для бытовых нужд

Green Heart – спортивная площадка, которая превращает сожженные калории в электроэнергию

Многие скептики посмеиваются над спортсменами, утверждая, что затрачиваемые ими во время выполнения упражнений силы вполне можно использовать для выработки электричества. Создатели спортивной площадки Green Heart пошли на поводу у такого мнения и создали первый в мире набор уличных тренажеров, каждый из которых является маленькой электростанцией.


Green Heart – спортивная площадка, которая превращает сожженные калории в электроэнергию

Первая спортивная площадка Green Heart появилась в ноябре 2014 года в Лондоне. Электричество, которое вырабатывают на ней любители физических упражнений, можно использовать для зарядки мобильных устройств: смартфонов или планшетных компьютеров.

Green Heart – спортивная площадка, которая превращает сожженные калории в электроэнергию

Излишки энергии площадка Green Heart отправляет в локальные электросети.

Giraffe Street Lamp – электростанция, спрятанная в качелях для детей

Парадоксально, но заставить вырабатывать «зеленую» энергию можно даже детей. Ведь они никогда не прочь что-нибудь вытворить, как-нибудь поиграть и развлечь себя. А потому голландские инженеры создали необычные качели с названием Giraffe Street Lamp, которые используют детскую непоседливость в процессе производства электричества.


Giraffe Street Lamp – электростанция, спрятанная в качелях для детей

Качели Giraffe Street Lamp вырабатывают энергию в то время, когда ими пользуются по прямому назначению. Раскачиваясь в сиденье, дети или взрослые стимулируют работу динамо-машины, встроенной в данную конструкцию.
Конечно, полученного электричества не хватит для полноценного функционирования частного жилого дома. Зато накопленной за день игр энергии вполне достаточно для работы не очень мощного уличного фонаря в течение пары часов после наступления сумерек.

Power Pocket: тепло человеческого тела как альтернативный источник энергии

Мобильный оператор Vodafone осознает, что его прибыли становятся больше, когда телефоны клиентов работают круглосуточно, а сами их владельцы не беспокоятся о том, где найти розетку для зарядки аккумуляторов своего гаджета. А потому эта компания спонсировала разработку необычной технологии с названием Power Pocket.
Устройства на основе технологии Power Pocket должны находиться как можно ближее к телу человека, чтобы использовать его тепло для производства электроэнергии для бытовых нужд.


Power Pocket: тепло человеческого тела как альтернативный источник энергии

На данный момент, на основе технологии Power Pocket создано два практичных товара: шорты и спальный мешок. Впервые они были опробованы во время музыкального фестиваля Isle of Wight Festival в 2013 году. Опыт оказался удачным, одной ночи человека в таком спальном мешке оказалось достаточно, чтобы зарядить аккумулятор смартфона примерно на 50 процентов.

Power Pocket: тепло человеческого тела как альтернативный источник энергии

В данном обзоре мы рассказали лишь про те альтернативные источники энергии, которые можно использовать в бытовых нуждах: дома, в офисе или во время отдыха. Но есть еще немало неординарных современных «зеленых» технологий, разработанных для использования в промышленных масштабах. Про них можно прочитать в обзоре 10 самых необычных источников альтернативной энергии.

Понравилась статья? Тогда поддержи нас, жми:

5 способов получить автономное электричество для частного дома

Плюсы автономного электроснабжения

Казалось бы, смысл в автономной системе электроснабжения только один – это когда рядом с домом нет ЛЭП, а тянуть собственную линию слишком дорого. Однако многие домовладельцы создают собственную систему электроснабжения даже в том случае, если уже подключены к общей системе.

Так в чем же выгода автономного электроснабжения?

  • В независимости. Своя система защитит от отключений электроэнергии по различным поводам. Автономная система тоже не застрахована от аварий и других неприятностей, но если создать дублирующие устройства, то защищённость от случайностей достигнет максимума.
  • В экономичности. Электроэнергия, подаваемая по единой системе, дорогая. Создание автономной системы тоже дело не дешёвое, но многие домовладельцы считают, что окупается она очень быстро, и столь же быстро становится делом не просто дешёвым, но и выгодным.
  • В мобильности. Автономная система, построенная на нескольких источниках электроэнергии, позволяет быстро реагировать на ситуацию, оставаясь при свете в любых ситуациях.

Какой источник автономного электроснабжения выбрать

Получить электроэнергию можно даже от печки. Однако, если учесть фактор затрат времени и сил, то всерьез можно рассматривать только те источники, которые могут работать сами по себе. По этой причине самыми популярными являются следующие способы обеспечения дома электричеством.

1. Генератор на жидком топливе

Например газовые генераторы доступны в самых разных вариантах, но использовать их в качестве постоянного источника электроэнергии в жилом доме не целесообразно. Причина заключается в:

  1. дороговизне горючего;
  2. шумности работы генератора;
  3. наличие выхлопных газов;
  4. необходимости выделения для генератора отдельного помещения или навеса.

Цены генераторов на жидком топливе начинаются от 30 тысяч рублей. Однако дешевизна полученной электроэнергии иллюзорная, поскольку должна быть умножена на стоимость топлива.

На фото газовый генератор HONDA HG 5500 (SE) мощностью 4.0кВт, цена 121 тысяч рублей

2. Солнечная электростанция

Солнечная электростанция не требует внимания и топлива. Единственное, что им нужно – это интенсивный свет, а поскольку это топливо природа поставляет не регулярно, то и мощные аккумуляторы. При наличии последних в условиях климата с большим количеством солнечных дней обеспечить дом электричеством вполне возможно.

Цены на комплект солнечной электростанции начинаются от 130 тысяч рублей. Окупаемость высокая, поскольку некоторые модели могут без проблем работать тридцать лет.

На фото «Солнечная дача» мощностью 1,6 кВт/400Ач/1000 Вт, цена 160 тысяч рублей за комплект

3. Ветрогенератор

Ветрогенераторы не менее популярны, чем солнечные батареи. Однако они еще более зависимы от капризов погоды, поэтому полагаться только на этот источник энергии можно не везде.

Самые простые ветрогенераторы стоят от 30 тысяч рублей. Их можно использовать для локальной выработки электроэнергии, но решить проблему полного энергоснабжения дома они не смогут. Более мощные ветряные генераторы для полноценного обеспечения жилища электричеством (от 3 кВт) обойдутся в 150 тысяч и выше.

Полноценный ветрогенератор мощностью 10 кВт стоит не менее 500 тысяч рублей. При среднем домашнем потреблении 250 кВт в месяц и цене 4 руб/кВт, такой ветряк будет окупаться более 40 лет

4. Мини гидроэлектростанция

Для мини ГЭС необходим водоток с небольшим перепадом высот для обеспечения эффекта падающей воды. В месте такого перепада устанавливается небольшая турбина, и электричество будет поступать в ваш дом постоянно, а главное – бесплатно. Под миниГЭС можно использовать естественный ручей или речку, а можно прорыть небольшой канал, проходящий через ваш участок. Однако такая ГЭС будет работать только в тёплое время года, потом придётся перейти на другие источники.

Если собирать гидроэлектрастанцию на 3-5 кВт из подручных материалов, то стоимость устройства не превысит 20 тысяч рублей

5. Альтернативные источники малой мощности

Сюда можно отнести электричество из земли и атмосферное электричество. Рассчитывать на полноценное элетроснабжение в обоих случаях не приходится, но для «дачных» нужд такие источник вполне пригодны.

Выводы

  1. Если потребление электричества не превышает 3-5 кВт/час, то выгоднее всего установить мини ГЭС и получатьэлектричество практически бесплатно. Для регионов, где часто бывают солнечные дни, также актуальны солнечные электростанции с высоким КПД.
  2. Если планируете потреблять от 10 кВт/час, то дешевле чем подключение к магистральному электроснабжению способов пока нет. Если возможности подключения нет, то делайте комбинированную систему исходя из индивидуальных возможностей и условий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *